
Ensuring Compliance with Data Privacy
and Usage Policies in Online Services

A dissertation submitted towards the degree

Doctor of Engineering
of the Faculty of Mathematics and Computer Science

of Saarland University

by

Aastha MEHTA

Saarbrücken, 2020

http://www.mpi-sws.org/~aasthakm

ii

Date of Colloquium: 03 November 2020
Dean of Faculty: Prof. Dr. Thomas Schuster

Chair of the Committee: Prof. Dr. Christian Rossow
Reporters
First Reviewer: Prof. Dr. Peter Druschel
Second Reviewer: Prof. Dr. Deepak Garg
Third Reviewer: Dr. Jonathan Mace
Fourth Reviewer: Prof. Dr. Thomas Ristenpart
Academic Assistant: Dr. Isaac Sheff

To my parents, Sonal and Ketan, and my brother, Rohan.

v

Abstract

Online services collect and process a variety of sensitive personal data that is sub-
ject to complex privacy and usage policies. Complying with the policies is critical,
often legally binding for service providers, but it is challenging as applications are
prone to many disclosure threats. We present two compliance systems, Qapla and
Pacer, that ensure efficient policy compliance in the face of direct and side-channel
disclosures, respectively.

Qapla prevents direct disclosures in database-backed applications (e.g., person-
nel management systems), which are subject to complex access control, data linking,
and aggregation policies. Conventional methods inline policy checks with appli-
cation code. Qapla instead specifies policies directly on the database and enforces
them in a database adapter, thus separating compliance from the application code.

Pacer prevents network side-channel leaks in cloud applications. A tenant’s se-
crets may leak via its network traffic shape, which can be observed at shared network
links (e.g., network cards, switches). Pacer implements a cloaked tunnel abstraction,
which hides secret-dependent variation in tenant’s traffic shape, but allows varia-
tions based on non-secret information, enabling secure and efficient use of network
resources in the cloud.

Both systems require modest development efforts, and incur moderate perfor-
mance overheads, thus demonstrating their usability.

vii

Kurzdarstellung

Onlinedienste sammeln und verarbeiten eine Vielzahl sensibler persönlicher Dat-
en, die komplexen Datenschutzrichtlinien unterliegen. Die Einhaltung dieser Richt-
linien ist häufig rechtlich bindend für Dienstanbieter und gleichzeitig eine Heraus-
forderung, da Fehler in Anwendungsprogrammen zu einer unabsichtlichen Offenle-
gung führen können. Wir präsentieren zwei Compliance-Systeme, Qapla und Pacer,
die Richtlinien effizient einhalten und gegen direkte und indirekte Offenlegungen
durch Seitenkanäle schützen.

Qapla verhindert direkte Offenlegungen in datenbankgestützten Anwendungen.
Herkömmliche Methoden binden Richtlinienprüfungen in Anwendungscode ein.
Stattdessen gibt Qapla Richtlinien direkt in der Datenbank an und setzt sie in einem
Datenbankadapter durch. Die Konformität ist somit vom Anwendungscode getrennt.

Pacer verhindert Netzwerkseitenkanaloffenlegungen in Cloud-Anwendungen.
Geheimnisse eines Nutzers können über die Form des Netzwerkverkehr offengelegt
werden, die bei gemeinsam genutzten Netzwerkelementen (z. B. Netzwerkkarten,
Switches) beobachtet werden kann. Pacer implementiert eine Tunnelabstraktion, die
Geheimnisse im Netzwerkverkehr des Nutzers verbirgt, jedoch Variationen basier-
end auf nicht geheimen Informationen zulässt und eine sichere und effiziente Nutz-
ung der Netzwerkressourcen in der Cloud ermöglicht.

Beide Systeme erfordern geringen Entwicklungsaufwand und verursachen einen
moderaten Leistungsaufwand, wodurch ihre Nützlichkeit demonstriert wird.

ix

Acknowledgements
I would like to thank several people whose guidance, encouragement, and support
made it possible to complete this thesis. First of all, I would like to thank my ad-
visors, Peter Druschel and Deepak Garg, for their invaluable and timely advice
throughout my PhD, and for giving me space and time to develop my skills and
ideas and to complete this thesis. Their support and motivation through rejections
and deadlines has helped me develop grit and resilience. I am inspired by their com-
mitment to excellence in research and hope to emulate it in my own future research.

I would like to thank Jonathan Mace and Tom Ristenpart for agreeing to be on
my thesis committee and taking the time to review my thesis.

I am thankful to Björn B. Brandenburg for his valuable inputs in the Pacer project,
and his advice on leadership and team management. I was fortunate to have worked
closely with fellow students: Eslam Elnikety, Katura Harvey, Mohamed Alzayat, and
Roberta De Viti. Their contributions to Qapla and Pacer are deeply appreciated. I
would also like to mention Anjo Vahldiek-Oberwagner with whom I collaborated
on earlier projects. Anjo and Eslam taught me the ropes of systems research. Thanks
to Manohar Vanga for all those conversations about Linux and Xen, and to Ahana
Ghosh for explaining how to train a neural network.

I would like to thank Rose Hoberman for providing critical feedback on many
paper drafts and talks, and helping me improve my writing and presentation skills.
Many thanks to the current and former members of the SysNets group, and to other
fellow students, postdocs, and faculty at MPI-SWS, with whom I have shared several
lunches and chatted about research, academic life, and a plethora of other topics.

Research at MPI would not have been possible without the immense support of
the office staff. Mary-Lou helped navigate the requirements of the PhD program.
Claudia, Annika, Gretchen, and Brigitta demysitified the complex paperwork re-
lated to German administration. Carina, Christian Klein, and Christian Mickler en-
sured that research was never delayed due to any IT-related issues.

Special thanks to friends, Vasundhara and Saakshita, who joined for coffee and
dinner breaks, and helped tide over periods of extreme frustration.

I would like to thank my parents and brother for encouraging me to be ambi-
tious and for boosting my morale whenever I faltered. I thank my parents-in-law
for understanding my ambition and for providing their unwavering support in my
endeavours. Last, but not the least, I would like to thank my husband, Arpan Gu-
jarati, who has been a fellow traveller and a partner in crime on this journey of PhD.

x

He has faced the trials and tribulations of not one, but two PhDs. This thesis could
not have been completed without you. Thank you for being a reviewer of my worst
ideas. Most importantly, thank you for being my best friend.

xi

Contents

Abstract v

Kurzdarstellung vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Thesis contributions . 3

1.1.1 Qapla: Policy compliance in database-backed systems 3
1.1.2 Pacer: Network side-channel mitigation in cloud applications . 5

1.2 Publications and collaborations . 6
1.3 Organization . 8

2 Background and Prior Work 9
2.1 Data policies . 9
2.2 Compliance system . 10
2.3 Direct data disclosures . 12

2.3.1 Accidental disclosures and active exploits 12
2.3.2 Preventing accidental disclosures 13

2.4 Side-channel disclosures . 15
2.4.1 Understanding side channels . 16
2.4.2 Mitigating side-channel disclosures 18

3 Qapla: Policy Compliance in Database-backed Systems 23
3.1 Motivation . 23
3.2 Design overview . 25

xii

3.3 Threat model . 27
3.4 Policy framework . 28

3.4.1 Single column policies . 29
3.4.2 Link policies . 30
3.4.3 Transformation policies . 32
3.4.4 Aggregation policies . 33
3.4.5 Relation between policy classes 34
3.4.6 Policy inference heuristics . 34

3.5 Enforcement . 35
3.5.1 Identifying applicable policies 35
3.5.2 Query rewriting algorithm . 36
3.5.3 Optimizations . 38

3.5.3.1 Query template cache 38
3.5.3.2 Partial evaluation . 38
3.5.3.3 Materialized views . 39

3.6 Compatibility with legacy applications 39
3.7 Implementation . 40
3.8 Case studies . 41

3.8.1 HotCRP . 41
3.8.2 APPLY . 44

3.9 Evaluation . 45
3.9.1 Experimental setup . 45
3.9.2 Microbenchmark . 46
3.9.3 Application latency benchmarks 47

3.9.3.1 HotCRP . 48
3.9.3.2 APPLY . 49

3.9.4 HotCRP throughput benchmark 50
3.9.5 Comparison with DBMS access control 51
3.9.6 Compatibility analysis . 53
3.9.7 Security validation . 54

3.10 Discussion . 55
3.10.1 Isolation of the reference monitor 55
3.10.2 User authentication . 55
3.10.3 Protection against offline linking attacks 55
3.10.4 Support for logging . 56

3.11 Related work . 56

xiii

3.11.1 Database access control . 56
3.11.2 Access control in production DBMSs 57
3.11.3 Database interposition . 58
3.11.4 Policy specification frameworks 59
3.11.5 CMS confidentiality . 60
3.11.6 Privacy in statistical databases 60
3.11.7 Information Flow Control . 60

3.12 HotCRP policies specified in Qapla . 61
3.13 APPLY policies specified in Qapla . 67

4 Pacer: Network Side-Channel Mitigation in the cloud 73
4.1 Network side channels . 73

4.1.1 Background . 73
4.1.2 Attack demonstration . 74

4.1.2.1 Experimental setup . 75
4.1.2.2 Analysis . 75

4.2 Threat model . 76
4.3 Key ideas . 78
4.4 Cloaked tunnel . 79

4.4.1 Tunnel requirements . 80
4.4.2 Architecture . 80
4.4.3 Tunnel security . 83

4.5 Pacer design . 84
4.5.1 Pacer architecture . 85

4.5.1.1 HyPace . 87
4.5.1.2 GPace . 90

4.5.2 Pacer security . 92
4.6 Generating schedules . 92

4.6.1 Gray-box profiling . 93
4.6.2 Corpus analysis . 94

4.7 Implementation . 95
4.8 Evaluation . 96

4.8.1 Experimental setup . 96
4.8.2 Spatial padding overhead . 97
4.8.3 Microbenchmarks . 97
4.8.4 Video streaming . 99

xiv

4.8.5 Document server . 102
4.9 Extensions . 104

4.9.1 Interactive client requests . 104
4.9.2 Multi-tier services . 105
4.9.3 Dynamic content . 105
4.9.4 Private VPN services . 105
4.9.5 Automated discovery of workload partitions 106
4.9.6 Schedule adaptation . 106

4.10 Related work . 106
4.10.1 Mitigating network side channels in clouds 107
4.10.2 Traffic-shaping systems to mitigate network side channels . . . 108
4.10.3 Predictive mitigation . 109
4.10.4 Related work with other threat models 109
4.10.5 Related work with non-security goals 111

5 Conclusion 113
5.1 Summary of results . 113
5.2 Future work . 114

5.2.1 Compliance for next-generation cloud applications 114
5.2.2 Efficient mitigation of side channels 115

Bibliography 117

xv

List of Figures

3.1 Qapla architecture . 26
3.2 Qapla policy identification algorithm 36
3.3 Qapla query latency overhead . 47
3.4 HotCRP client latency . 49
3.5 APPLY client latency . 50
3.6 HotCRP submission throughput . 51
3.7 Qapla and DBMS access control performance comparison 52

4.1 CNN classifier for network side-channel attack 76
4.2 Pacer threat model . 77
4.3 Cloaked tunnel . 81
4.4 Pacer architecture . 86
4.5 Privacy vs bandwidth overhead . 98
4.6 Transmit schedule for a video segment 100
4.7 Download latencies for video segments 101
4.8 Transmit schedules for document clusters 102
4.9 Document server throughput and client latencies 104

xvii

List of Tables

3.1 View-based policies . 24
3.2 Subset of Qapla policies for HotCRP 42
3.3 HotCRP changes for Qapla . 43
3.4 Qapla microbenchmark queries . 46
3.5 Trace actions for HotCRP . 53
3.6 Complete set of Qapla policies for HotCRP 67
3.7 Complete set of Qapla policies for APPLY 71

1

Chapter 1

Introduction

Today, online social networks, e-commerce websites, and mobile applications col-
lect and aggregate a massive amount of personal information. Although this data
enables services to provide rich user experience online, unintended disclosure and
misuse of the data may affect users personally, socially, financially, and profession-
ally. For instance, in one case, the introduction of new features in an online so-
cial network resulted in exposure of users’ old posts leading to embarrassment for
users [52]. Several e-commerce and travel booking services have been accused of on-
line price discrimination, as they use differential pricing based on personal data [2].
Credit card numbers stolen from online services are misused by cyber criminals for
committing fraud, which causes financial losses to victims [70]. Users’ publicly ex-
posed social media updates have enabled robbers to plan house robberies [1]. Data
has even been misused to undermine the political discourse in society [160].

Legislators have reacted to this growing threat of data disclosures and misuse
with stricter laws and regulations, such as the California Consumer Privacy Act
(CCPA) [22] and the European Union’s General Data Protection Regulation (GDPR)
[59]. However, laws alone are not enough. Service providers must have the neces-
sary tools to ensure that their systems remain compliant with the laws, regulations,
policies, and users’ choices.

Ensuring compliance in contemporary services is a challenging task for two main
reasons. First, services handle data that is subject to complex and diverse policies gov-
erning their privacy and usage. For instance, users’ photos in online social networks
may be limited to friends or friends-of-friends, while their click history may be used
only for personalization and may require expiration; email is private to sender and
recipient(s); a company’s personnel records may be accessible in full only to the HR
(human resources) department, while a subset may be accessible to other employees.

2 Chapter 1. Introduction

Second, services tend to have complex architectures and large, rapidly-evolving code-
bases. Consequently, they are prone to various types of data disclosure and misuse
threats. Threats may range from application bugs, misconfigurations and human
errors to exploitable vulnerabilities, malware, side channels, and malicious insid-
ers. Ensuring continued compliance with all the complex policies in a continuously
evolving codebase and in the face of a variety of threats is non-trivial.

Data disclosures and misuse can be broadly categorized into two types: direct
and indirect. In a direct disclosure, sensitive data immediately becomes available to
an unauthorized user or a third party (principal), who may then misuse the data.
Direct disclosures may arise due to bugs or misconfigurations of the system, which
accidentally leak data. They may also arise when a malicious user exploits system
vulnerabilities or inject malware to extricate sensitive data from the system. Several
large-scale direct data disclosures have been reported in online services [46, 53, 109].

Additionally, even if a principal cannot directly access the sensitive data from
a system, (s)he may indirectly infer the data via side channels. Side channels arise
when mutually untrusting principals share physical resources. An unauthorized
principal (called the adversary) can observe the application’s (victim’s) use of the
shared physical resource, which may be correlated with the victim’s secrets, and
then infer the victim’s secrets from its usage pattern. For instance, it has been shown
that an adversary can learn the content of a VoIP (voice-over-IP) conversation by
observing just the sizes and timing of the packets transmitted via shared network
elements like switches and routers [180]. Side channel disclosures are difficult to
eliminate since, at system design time, it is difficult to anticipate which resources
can be exploited as side channels and what inferences an unauthorized principal
can make from observing the victim’s usage of the shared resource.

A systematic approach to mitigating both direct and side-channel disclosures is
to design compliance systems that enforce data policies “by design”, i.e., that system-
atically subject all data accesses in an application to policy checks. A compliance sys-
tem (i) specifies a threat model describing the threats covered by the system, e.g., an
adversary’s capabilities and the channels over which data can be disclosed to the ad-
versary; (ii) provides a policy specification language that allows specifying the data
policies of the application in a clear, concise, and auditable manner; and (iii) pro-
vides a mechanism to enforce the policies and protect the data under the specified
threat model.

For a compliance system to be practical, it must add low performance overhead
and require minimal changes to the application. Moreover, to ensure compliance

1.1. Thesis contributions 3

despite rapid changes in the application codebase, the compliance system must be
independent from the application. In particular, the policy specification and enforce-
ment should be independent of the application logic. Finally, the compliance system
itself must be secure and not reduce the security of the application being protected.

1.1 Thesis contributions

In this thesis, we demonstrate that one can build practical compliance systems that can
prevent direct and side-channel disclosures in online services by ensuring compliance by
design with precise data privacy and usage policies, independently of application logic. We
present the design, implementation and evaluation of two compliance systems that
prevent direct and side-channel disclosures in specific settings. First, we present
Qapla [113], a system that prevents direct disclosures due to accidental bugs and
misconfigurations in database-backed applications. Second, we present Pacer [114],
a system that prevents network side-channel disclosures in cloud applications.

1.1.1 Qapla: Policy compliance in database-backed systems

A large number of web services today store their confidential data in relational
database management systems (DBMSs). This data is often subject to complex and
fine-grained policies. In a personnel management system, for instance, ordinary
employees may be allowed to query their own personal information but not that of
others. Members of a workers’ council may be allowed to query the columns con-
taining employee names and ages separately, but not together, to prevent them from
linking employees to their ages. Similarly, members of the payroll department may
not be allowed to query the health history of individual employees, but they may be
allowed to query for aggregates over the health histories of all employees.

Today, services attempt to ensure policy compliance by implementing policy
checks inlined with the application logic. Specifically, when an application accesses
sensitive data, checks are implemented to determine whether the access complies
with relevant policies of the data. Such policy checks are scattered throughout the
application codebase. Ensuring continued compliance in this manner is cumber-
some and error-prone. As the applications or data policies evolve, developers poten-
tially need to revisit all code paths to ensure that all data accesses continue to remain
policy compliant. It is easy to miss some checks or implement incorrect checks, and
accidentally disclose sensitive data to an unauthorized user.

4 Chapter 1. Introduction

We present Qapla, a compliance system that prevents such accidental data dis-
closures in database-backed applications. Qapla provides a policy specification lan-
guage that can specify a rich class of application policies, including the ones de-
scribed above. The policies include fine-grained access control on individual rows,
columns and cells, as well as complex conditions to restrict or relax access to cells
based on query operators applied to cells. For instance, Qapla can specify a policy to
prevent an application from linking two columns through join or filter operations,
and another policy to allow the application to access a column only in aggregated
form (Section 3.4). The policies are specified in a SQL-like language, as a function of
the database schema, and stored in the database itself (in separate tables).

For policy enforcement, Qapla uses a reference monitor that intercepts applica-
tion queries at runtime, looks up applicable policies, and rewrites queries to make
them policy compliant (Section 3.5). The reference monitor is integrated with a
database adapter between the application and the underlying DBMS, and requires
no changes to and no specific support from the DBMS for policy enforcement. More-
over, the integration with a database adapter makes Qapla portable across DBMSs.

Qapla’s policy enforcement by query rewriting is completely transparent to ap-
plication queries that are already policy compliant. And for non-compliant queries,
Qapla still returns the policy-compliant subset of results, thus preserving maximal
functionality even for non-compliant application queries.

To evaluate Qapla, we used it to ensure policy compliance in two applications
(Section 3.8): (i) HotCRP [74], a popular conference management system that han-
dles conference paper submissions and reviews, and (ii) APPLY, our institute’s job
application portal that handles candidate applications and selection process work-
flows. We empirically verified Qapla’s security guarantees by injecting known dis-
closure bugs in HotCRP and checking that Qapla successfully prevents disclosures
(Section 3.9). We also evaluated Qapla’s performance, and observed that Qapla in-
curs moderate runtime overheads on applications.

Contributions summary Qapla is a policy-compliance middleware for database-
backed applications that enforces policies in a DBMS-agnostic and an application-
transparent manner. Our main contributions are: (i) a policy language that en-
ables specifying a rich class of data policies, including data linking and aggrega-
tion policies, independently from both the application code and any DBMS-specific
support; (ii) the design and architecture of the reference monitor that allows policy
enforcement independently from application and DBMS; and (iii) an evaluation that

1.1. Thesis contributions 5

demonstrates Qapla’s security guarantees and moderate performance overheads, in-
dicating its practicality for database-backed applications.

1.1.2 Pacer: Network side-channel mitigation in cloud applications

Side channels are a growing vector for data disclosures, of particular concern for
applications hosted in public clouds, where mutually distrusting tenants share the
cloud’s physical resources. Numerous side-channel disclosures have been demon-
strated in public clouds, which exploit a variety of physical resources (e.g., CPUs,
caches, and memory) shared between tenants co-located on the same server or be-
tween the tenants and the host (hypervisor and OS) [3, 11, 48, 58, 80, 81, 95, 103, 131,
132, 135, 136, 152, 164, 186, 188, 189, 194] (see Section 2.4 for discussion).

Even if tenants rent dedicated servers or CPU sockets and use memory only
within their local NUMA (Non-Uniform Memory Access) domain, they may still
share network elements: the server’s network interface card (NIC), a top-of-the-rack
switch, or a router. By generating cross-traffic on such shared elements and ob-
serving its delay, an adversarial tenant can infer the shape of a co-located victim’s
encrypted network traffic [4, 144, 146].

In contrast to side channels via shared microarchitectural state and memory, side
channels via shared network elements have not received much attention, particu-
larly in the context of cloud computing. In this thesis, we present Pacer, a compliance
system that focuses on mitigating network side channels in the cloud. Specifically,
Pacer prevents leaks of a tenant’s secrets to an adversary who can observe, directly
or indirectly, the shape of the tenant’s encrypted network traffic.

Pacer mitigates such leaks by making the shape of victim’s network traffic inde-
pendent of its secrets. Shaping involves padding each of a tenant application’s out-
going messages to a secret-independent size, and transmitting all packets at secret-
independent times. While Pacer actively prevents secret-dependent variations in
the traffic shape, it specifically allows variations in the shape based on non-secret
information of the tenant, thus reconciling security with efficiency (Section 4.3).

To implement traffic shaping, we present the abstraction of a cloaked tunnel that
encapsulates the observable network path between the tenant application and its
clients, and enforces a selected shape on the application’s traffic (Section 4.4). The
tunnel pads payload packets and transmits them at times defined in the transmit
schedule (shape) for the application traffic, transmitting a dummy packet when the

6 Chapter 1. Introduction

application fails to prepare payload packets in time. Thus, the resulting traffic shape
is secret-independent by design.

Pacer realizes the cloaked tunnel abstraction for the cloud environment, where
an adversary may be co-located with the victim’s VM on the same server and there-
fore may observe the victim’s traffic at the shared network interface of the server. To
handle this case, Pacer integrates the tunnel with the cloud’s hosting server. Pacer
relies on a paravirtualization approach to implement the tunnel, which ensures full
isolation from potentially secret-dependent computations in the guest VM and re-
quires modest changes to the cloud hypervisor and the guest OS (Section 4.5).

To generate efficient traffic shapes, the tenant partitions its workloads based on
public information. For each partition, a profiler samples the distributions of the
tenant’s unmodified payload traffic shapes and computes a schedule, which is sub-
sequently used to shape all the tenant’s traffic within the partition (Section 4.6).

To evaluate Pacer, we used it to shape traffic of two applications (Section 4.8):
(i) a document hosting service based on Mediawiki [112], and (ii) a custom video-
streaming service hosting a corpus of ~1200 YouTube videos. For both applications,
Pacer’s shaping incurs modest overheads on bandwidth, application throughput,
and client response latencies.

Contributions summary Pacer is a novel and efficient system that prevents net-
work side-channel leaks in cloud tenants by design and with minimal support from
the tenant application. Our main contributions are: (i) a traffic shaping strategy that
makes traffic shapes independent of the tenant’s secrets and allows variations in the
shapes only based on non-secrets; (ii) a gray-box profiler that generates traffic shapes
automatically from the tenant’s network traces with minimal support from the ten-
ant application; (iii) a cloaked tunnel abstraction, which ensures that the shape of
network traffic in the tunnel is independent of secrets; (iv) a paravirtualized imple-
mentation of the cloaked tunnel for an IaaS cloud server that ensures full isolation
from potentially secret-dependent computations of the tenant; and (v) an evaluation
that demonstrates that strong mitigation of network side channels is possible with
moderate overheads.

1.2 Publications and collaborations

This thesis contains text and material from the following two publications [113, 114]:

1.2. Publications and collaborations 7

• “Qapla: Policy compliance for database-backed systems”.
Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, Peter Druschel.
USENIX Security Symposium, 2017.

• “Pacer: Network Side Channel Mitigation in the cloud”.
Aastha Mehta, Mohamed Alzayat, Roberta De Viti, Björn B. Brandenburg,
Peter Druschel, Deepak Garg. Under submission. arXiv preprint available at
https://arxiv.org/abs/1908.11568.

The following paragraphs describe the origins of the text and material in this thesis
in more detail.

Chapter 1 The introduction is largely written by me. Section 1.1 paraphrases some
text from the introductions of the above two papers.

Chapter 2 The background is entirely written by me.

Chapter 3 The text of Chapter 3 is derived from the Qapla paper [113], which was
written by me in collaboration with my advisors. The case study of APPLY (Sec-
tion 3.8.2) and the corresponding experiments and results (Section 3.9.3.2) were de-
veloped in collaboration with my co-author, Katura Harvey. The experiments of
sections 3.9.4 and 3.9.6 were designed with assistance from Eslam Elnikety, while
the experiments were executed by me.

Chapter 4 The text of Chapter 4 is derived from the Pacer paper [114], which was
written by me in collaboration with my co-authors. Sections 4.2-4.6 are mostly taken
from the paper, while the remaining sections expand on the material from the paper.

The core Pacer system was designed, implemented and evaluated by me with
guidance from my advisors. The clustering algorithms (Section 4.6.2), the gray-box
profiler (Section 4.6.1), and the experimental results (sections 4.8.2, 4.8.4, and 4.8.5)
were generated in collaboration with Mohamed Alzayat and Roberta De Viti.

Chapter 5 The conclusion and future work is written by me.

During my PhD, I have also contributed to the following publications [45, 124, 166],
which are not included in this thesis.

https://arxiv.org/abs/1908.11568

8 Chapter 1. Introduction

• “Guardat: Enforcing data policies at the storage layer”.
Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg,
Peter Druschel, Ansley Post, Rodrigo Rodrigues, Johannes Gehrke.
European Conference on Computer Systems (EuroSys), 2015.

• “Thoth: Comprehensive Policy Compliance in Data Retrieval Systems”.
Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg,
Peter Druschel. USENIX Security Symposium, 2016.

• “Oblivious Multi-Party Machine Learning on Trusted Processors”.
Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, Manuel Costa. USENIX Security Symposium, 2016.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we discuss background
on data policies, direct and side-channel disclosures, and prior work on mitigating
disclosures. In Chapter 3 and Chapter 4, respectively, we describe the design, im-
plementation and evaluation of Qapla and Pacer, as well as discuss more specific
related work. Finally, we summarize this thesis and outline directions for future
research in policy compliance in Chapter 5.

9

Chapter 2

Background and Prior Work

In this chapter, we first discuss data policies and compliance system components.
We then give a general overview of the threats and mitigation mechanisms for the
two kinds of data disclosures that are the focus of this thesis: direct and side-channel
disclosures. We discuss more specific related work in Chapters 3 and 4.

2.1 Data policies

Services today access data that has complex privacy and usage policies. These poli-
cies arise from three broad sources:

(i) User preferences. In an online social network, for instance, users may wish to
share their photos only with friends, but not with others.

(ii) Service provider’s internal policies. For example, in an organization, only the hu-
man resource employees may have full access to all employee records, while
all the other employees may have access to only a subset of the records. Mem-
bers of the equal opportunities division may have access to salary statistics but
may not be allowed to access salaries of individual employees.

(iii) External legal requirements. For example, with the General Data Protection Reg-
ulation (GDPR) [59], organizations need to ensure that personal data is pro-
tected from unintended disclosures1, and that no personal data item is used

1Article 5(1)(f) [59]: Personal data shall be processed in a manner that ensures appropriate security of the
personal data, including protection against unauthorised or unlawful processing and against accidental loss,
destruction or damage, [...] ("integrity and confidentiality")

10 Chapter 2. Background and Prior Work

for unintended purposes2. They may even be required to delete the collected
user data after a stipulated period of time3.

There are several challenges involved in ensuring compliance with such policies.
First, the policies are diverse and complex, and often stated in a natural language
like English. Mapping the natural-language policies to specific enforceable compo-
nents within a system is difficult. Second, systems within which such policies must
be enforced are typically complex and evolving. This makes it difficult to contin-
uously ensure compliance with all policies across all code paths. Finally, systems
are prone to numerous threats that can violate data policies. Building a system that
comprehensively mitigates all threats is non-trivial.

Although an important problem, this thesis does not focus on solutions to trans-
late natural-language specifications into enforceable system-level specifications, nor
does it provide any mechanisms to compare and match the natural-language spec-
ifications and their system-level descriptions. However, as we describe later, we
provide a policy specification framework that enables concise and intuitive specifi-
cations of application policies, which are easy to inspect and reason about.

In addition, to address the second and the third challenge, we present compli-
ance systems that can enforce data policies independently from the application code,
while addressing specific classes of threats, viz. direct and side-channel disclosures.

2.2 Compliance system

In the introduction we described a principled approach to preventing data disclo-
sures and misuse, which is to design a dedicated compliance subsystem that is re-
sponsible for this task. Designing a compliance system involves (i) defining a precise
threat model describing threats considered and assumptions made by the compli-
ance system, (ii) specifying data policies that the application needs to comply with,
and (iii) designing a mechanism to enforce the specified policies. Next, we elaborate
on the three components of the compliance system design process.

Defining a threat model The threat model must precisely state an adversary’s ca-
pabilities (e.g., passive observation, active exploits) and the channels through which

2Article 5(1)(b) [59]: Personal data shall be collected for specified, explicit and legitimate purposes and not
further processed in a manner that is incompatible with those purposes [...] (Purpose limitation)

3Article 5(1)(e) [59]: Personal data shall be kept [...] for no longer than is necessary for the purposes for which
the personal data are processed [...] (Storage limitation)

2.2. Compliance system 11

data can be disclosed to the adversary (e.g., a web, filesystem or database interface).
It must also define the trusted computing base—the set of components that the com-
pliance system relies on for ensuring compliance, including external components,
such as an authentication server for verifying the identity of principals in the sys-
tem. Finally, it is assumed that the adversary cannot subvert or bypass the com-
pliance system to access the data, and that the compliance system itself does not
disclose sensitive data it is designed to protect.

Policy specification Data privacy and usage policies must refer to principals that
can access the data (a principal may be associated with a human user or an applica-
tion component), the data object being accessed (e.g., a disk block, a file, a database
column) types of access (e.g., a block write, a file read, or a database query), and con-
ditions under which each principal is granted or denied each type of access (e.g., time
of access, the state or content of the data store, the organizational role of a user).

A compliance system must provide a policy specification language that can ex-
press the relations between the principals, the data objects, the type of access, and the
conditions of access in the data policies. The specification enabled by the language
must be clear, concise, and easy to both reason about and audit.

Enforcement To enforce policies, each data flow through the channels that is ob-
servable by an adversary must be subject to policy checks. Data must be allowed to
flow through the channel, only if the flow is compliant with relevant policies.

Policies can often be enforced at multiple layers in the software stack. For in-
stance, a policy controlling read of a table column in a relational database can be
specified and enforced at the database layer or at the granularity of individual disk
blocks constituting the table. At the database layer, the policy can be easily spec-
ified using a SQL view and enforced by executing application queries against the
view. However, correct policy enforcement would require that the DBMS imple-
ments views correctly. At the disk layer, the policy must map the table column to
disk blocks and the disk blocks to corresponding policies, while enforcing the policy
would require intercepting read of every disk block constituting the column, which
could potentially incur significant overheads. The choice of the enforcement layer
depends on the granularity of data on which policies are specified and the threats
being covered, and determines the efficiency of the compliance system, the size of
the trusted computing base, and the usability of the system.

12 Chapter 2. Background and Prior Work

In summary, a compliance system guarantees that only policy-compliant data dis-
closures can be made through the specified channels. We now discuss the kinds of
threats that lead to direct and side-channel disclosures, and the general techniques
that have been developed to mitigate such threats for different application settings.

2.3 Direct data disclosures

Direct disclosures can arise in two ways: accidentally or due to active exploits. In
the following, we briefly explain both types of disclosures, and then discuss why we
focus on accidental disclosures in this thesis. We also give a background on different
types of access control policy specification and enforcement mechanisms, which are
the state-of-the-art techniques to enforce policies and prevent disclosures.

2.3.1 Accidental disclosures and active exploits

In accidental disclosures, the system itself unintentionally reveals sensitive data to
unauthorized, passive users via its interfaces. Such disclosures may occur due to
bugs or misconfigurations of the system, causing compliance failures. Indeed, acci-
dental disclosures have exposed sensitive user data in many systems [23, 53].

On the other hand, even if a system does not have bugs that immediately dis-
close sensitive data, it may still have vulnerabilities that could be actively exploited
by an adversary to circumvent policy checks. For instance, the Heartbleed vulner-
ability [69] in OpenSSL library could be used to extricate private keys of an appli-
cation relying on the library, which in turn would allow an adversary to decrypt
application’s network traffic, thus violating all data policies. Alternatively, an ad-
versary can exploit a vulnerability to install a malware that extricates authentication
credentials; the adversary can then use the credentials to access sensitive data as an
“authorized” user [109].

Despite the numerous incidences of large-scale accidental disclosures [23, 53, 54,
115, 116], systematic solutions to prevent them do not exist. Consequently, this thesis
focuses on the problem of mitigating accidental direct disclosures.

Furthermore, this thesis focuses on accidental disclosures arising due to bugs
and misconfigurations in applications. In general, disclosures can arise also in the
system stack, such as the operating system, the storage subsystem (e.g., file system or
database management system), or the network subsystem. However, while applica-
tions are maintained by multiple teams of developers and evolve more rapidly, the

2.3. Direct data disclosures 13

system stack is often maintained by a small team of experts in an organization’s IT
department and evolves slowly. Moreover, the system stack is typically composed
of components from reputable vendors, and is likely to be patched regularly with se-
curity updates. As a result, there are likely to be more unintentional data disclosures
from the application layer compared to the system stack.

2.3.2 Preventing accidental disclosures

The key mechanism to prevent direct disclosures is access control. Access control al-
lows principals authorized for a particular access to a resource to access the resource,
and prevents unauthorized principals from accessing the resource4. We next discuss
various techniques to specify and enforce access control policies.

File system access control File system access control [65, 68] protects persistent
files from unauthorized users or applications. Access control policies are specified
in the form of an access control list (ACL), which is a set of system principals au-
thorized to perform specific operations on a file in the file system. Principals may
represent users or applications in the system, and file operations may include read,
write, and execute.

File system ACLs provide only coarse-grained access control. They do not allow
fine-grained control on file operations, such as preventing only parts of a file from
being read, or allowing a file to be modified in certain ways, but not others. They also
do not allow one to specify time-based conditions (e.g., a file must not be accessible
after a certain date) or conditions on principals (e.g., a file can only be accessed by
employees with a certain role), although the latter could be emulated with “group
permissions” in the ACLs. Thus, file system ACLs are inconvenient for specifying
complex data access policies on data.

Guardat [166] supports complex policies on files that go beyond the standard file
system ACLs. The policies are specified in a declarative language based on Datalog
[97], can express conditions on users, roles, access time, and state and content of
files, and are enforced at the disk block layer. The file abstraction is too coarse-
grained to efficiently specify and enforce fine-grained policies, such as those arising
in database-backed applications. Consequently, filesystem ACLs and Guardat are
not suitable for ensuring policy compliance in such applications.

4Authorization of principals refers to the mechanism of specifying the access rights of the principals
to a resource.

14 Chapter 2. Background and Prior Work

DBMS access control Relational DBMSs store data in database tables in the form
of rows and columns. Thus, access control in DBMS naturally requires restricting
access to rows, columns, and cells. A large number of relational DBMSs [77, 140,
147, 155, 161] allow specifying access control policies on rows in database tables in a
way that is similar to the filesystem access control. Principals and roles are defined
in the DBMS and each row in a table is allowed access to a set of principals.

To specify policies on columns, there are different types of specification frame-
works. A popular approach is to create separate policy-defined logical views of the
database tables for each principal, such that each view allows appropriate principals
access to only the policy-compliant subset of the data from underlying tables. The
view definitions can express conditions on users, roles, access time, and even on val-
ues in the database tables. Application queries are then restricted to the database
views rather than the underlying tables. Policy views have been proposed in several
research systems [10, 14, 55, 66, 134], and is the most basic mechanism for column
access control supported by all conventional DBMSs. However, views are not effec-
tive for enforcing access control by design. Policy changes require modifying not
only the database views, but also application queries. In particular, when a more
restrictive policy is added to the database, application queries must be updated to
query the correct database view in order to enforce policies correctly. Thus, views
may fail to prevent disclosures if there are bugs in the application queries.

In addition to view-based access control, certain DBMSs like IBM DB2 [147], SQL
Server [156], and Oracle [130] provide explicit syntax to specify policies on columns,
while Oracle [161] also provides a unified syntax for row-, column-, and cell-level ac-
cess control specification. However, such support for policy specification is DBMS-
specific and non-portable, and forces applications to be locked in with a specific
DBMS vendor.

Policy specification and enforcement in applications Existing access control sup-
port in the storage systems is not sufficient to ensure compliance with complex
policies that often arise in applications. Consequently, applications tend to imple-
ment policy checks on their own. They often implement access control operationally,
i.e., as code, and inlined with the application logic. However, enforcing data poli-
cies this way is cumbersome and error-prone. Instead, specifying policies using a
declarative language and on the data enables a concise and intuitive specification that is
easier to reason about, audit, and maintain independent of the application code. Ad-
ditionally, the logic for checking declarative policies can be typically implemented

2.4. Side-channel disclosures 15

centrally and with few lines of code, which minimizes the trusted computing base
of the compliance system.

Examples of declarative policy specification frameworks include EPAL (Enter-
prise Privacy Authorization Language) [7] and XACML (eXtensible Access Control
Markup Language) [50]. EPAL is a generic policy specification framework from IBM
that was designed for use in enterprises. EPAL specifies enterprise privacy policies
in terms of user categories, data categories, purposes, actions, conditions, and obli-
gations. However, EPAL has not seen widespread adoption in many applications.

XACML [50] is another platform-independent policy specification framework,
which is a web standard and has been adopted by some web services for access con-
trol policy specification [183]. XACML enables declarative, fine-grained attribute-
based access control policies. It specifies application-specific attributes on users,
data, actions, and system environment, and a policy specifies conditions on these at-
tributes. Both EPAL and XACML need to be implemented by each application sepa-
rately. Moreover, they support policies on abstract, high-level user actions within the
application, such as view, edit, or delete, but do not support fine-grained restrictions
on database accesses.

In this thesis, we focus on policy compliance in database-backed applications,
which need to comply with complex policies such as preventing certain data linking
operations or allowing access to only aggregated data. Existing policy specification
frameworks cannot support such policies. With Qapla, we provide a declarative
policy specification language that can express such policies independently from the
application code and without relying on any specific DBMS support. Furthermore,
Qapla enforces the policies on each database query independently from the applica-
tion code and the DBMS, thus eliminating all accidental disclosures due to bugs in
application queries by design.

2.4 Side-channel disclosures

Recall from Chapter 1 that one of our contributions is Pacer, a compliance system to
ensure compliance with data policies in the face of network side-channel disclosures.
We provide below some background on side channels in general, and explain the key
principles underlying the different ways to mitigate side-channel disclosures.

16 Chapter 2. Background and Prior Work

2.4.1 Understanding side channels

Side channels arise in shared resources, such as CPUs, cores, hardware counters,
caches, memory, storage, schedulers, files, network elements, and network packets.
An effective side-channel attack requires the adversary to have a priori knowledge
of the correlations between the victim’s secrets and the resource usage pattern the
secrets generate. The adversary may gain this knowledge, for instance, by profiling
the victim’s application on its own infrastructure. Throughout this thesis, we simply
assume that the adversary has the relevant knowledge.

A side-channel attack involves two steps. First, the adversary observes the usage
of a shared resource, which is correlated with the victim’s secrets. The adversary
then uses statistical techniques to infer the victim’s secrets from the side-channel
observations. Next, we elaborate on the two steps.

Capturing observations over side channels Broadly speaking, side-channel ob-
servations can arise from an application in two ways: accidentally and due to an
adversary having compromised the application.

In accidental disclosures, an adversary simply captures the application’s usage
of shared resources as an observer external to the application. For instance, side
channel attacks have been demonstrated using unprivileged application processes
that bypass OS isolation [3, 48, 131, 164, 188, 189], as well as unprivileged VMs in
clouds that bypass hypervisor isolation [78, 80–82, 103, 136, 195]. In addition, attacks
have also been demonstrated against applications running in trusted execution envi-
ronments (TEEs), which are supported by strong hardware-based isolation [95, 167,
186]. In network side channels, the adversary can directly observe the victim’s traffic
shape at a network link [20, 26, 63], or indirectly infer the traffic shape by contend-
ing with victim’s traffic at a shared link and measuring the available bandwidth or
queueing delays for its own traffic [4, 144, 146].

In contrast to accidental side-channel disclosures, an adversary can exploit appli-
cation vulnerabilities to gain access to its secrets, and then transmit the secrets out of
the system by exploiting the shared resources from within the victim’s system. We
call such side-channel disclosures as covert channel disclosures. An adversary may
encode the secrets in the timing modulation of the system’s execution or its network
transmissions, in the state of resources used by the application (e.g., by modifying
the size of a file on shared file system), or in spare bits of network packet headers

2.4. Side-channel disclosures 17

[61, 173, 191]. (The adversary relies on side channels because it may not have a direct
communication channel to the outside, or it may want to avoid detection.)

In server applications, an adversary can also compromise the clients of the appli-
cation; it may then send requests to the server impersonating a legitimate client and
infer the server’s secrets based on the server’s response times. Such adversaries have
been shown to exploit the execution time of cryptographic libraries to infer crypto-
graphic keys [11, 17, 18, 89] and, more recently, the network transmission time to
infer usage pattern of microarchitectural resources at the remote server [90, 152]5.

Making inferences from observations Once the adversary collects the necessary
observations over a side channel, it applies analytical techniques to glean sensitive
information from the observations. Depending on the side channel exploited, the
analyses may range from simple aggregation and thresholding mechanisms to more
sophisticated machine learning classifiers.

In certain exploits, such as those based on shared microarchitectural state, the
victim’s secret is inferred one bit at a time. The analysis involves simple thresholding
mechanisms to identify the bits in the victim’s secrets: for example, if the latency
of the adversary’s access to a resource is above a threshold, the victim’s bit is 1,
otherwise it is 0 [49, 103, 188].

In contrast to microarchitectural side channels, network side-channel exploits in-
fer secrets from the sizes and timing of victim’s packets or bursts. They rely on more
sophisticated statistical analyses. The earliest statistical analyses involved measur-
ing the similarity or distances between the distributions of observations (e.g., Jac-
card’s similarity coefficient [101], or optimal string alignment distance [21, 174]),
and then using classifiers based on Naïve Bayes [43, 71], nearest neighbours [176] or
Support Vector Machines (SVM) [19, 20, 133]. With advances in machine learning,
the analyses have become more sophisticated. Most recently, deep learning tech-
niques based on Neural Networks have been used for side-channel inferences [146].
Indeed, we also demonstrate a network side-channel attack in Section 4.1, where
an adversary is able to use a Convolutional Neural Network (CNN) to accurately
identify video streams based only on noisy timing measurements of the streams.

With the growing number of shared resource exploits and the increasing sophis-
tication of available analyses, side channels are becoming a major concern for service

5For a detailed discussion on side and covert channels based on shared microarchitectural state, we
refer the reader to surveys by Ge et al. [58] and Szefer [159].

18 Chapter 2. Background and Prior Work

providers. Public clouds particularly lower the barrier to obtain the necessary ob-
servations through side channels, making accidental side-channel disclosures quite
feasible. An adversarial tenant can simply rent cheap virtual machines, co-locate
them with a victim tenant’s virtual machine on a cloud server, or within a rack in
the datacenter [78, 144], observe the victim’s usage of shared resources, and thereby
learn the victim’s secrets. For this reason, and also owing to the large-scale use of
public clouds, we focus on accidental side-channel disclosures in this thesis.

2.4.2 Mitigating side-channel disclosures

Unlike direct disclosures, the main challenge for mitigating side-channel disclosures
is not specifying data policies, but rather enforcing them. Indeed, a compliance sys-
tem to mitigate side-channel disclosures essentially enforces a single implicit policy:

The application’s sensitive data must not be inferrable by any unauthorized principal.

This seemingly simple policy is actually non-trivial and difficult to enforce, since
it is difficult to anticipate the observation and inference capabilities, as well as the
background knowledge of unauthorized principals (as discussed in Section 2.4.1).
In the following, we discuss prior work related to three high-level approaches for
enforcing such a policy: (i) adding noise to the channel observations, (ii) partitioning
the physical resource, and (iii) shaping the victim’s usage of the shared resource.

Noising observations A natural approach to mitigating side channels is to rely on
noise in the adversary’s observations. Noise is implicitly present when unrelated
computations share the physical resource being observed. However, an adversary
could simply wait for an opportune moment to attack when unrelated noise in the
victim’s execution is low. Alternatively, additional synthetic noise can be added in
the victim’s execution [89] to thwart attacks. However, ad-hoc or random noise may
not always be sufficient in level and entropy to overcome a sophisticated adversary’s
detection and inference capabilities.

In contrast to random noise, differentially private noise [42] can provide quantifi-
able and tunable guarantees on privacy leaks. Zhang et al. [193] recently proposed
using differentially private noise to mitigate network side channels. They demon-
strate that adding noise to network traffic shapes of a corpus significantly reduces
the accuracy of machine learning classifiers in classifying the video corpus. How-
ever, their precise privacy guarantees against the adversary remain unclear. Un-
like in traditional analytics settings, where the differentially private noise added to

2.4. Side-channel disclosures 19

a corpus determines the number of queries that a (adversarial) querier is allowed
to execute on the corpus, a side-channel observer can execute infinite classification
“queries” on the traffic shapes, which could increase the privacy loss significantly
and eventually allow the identification of the videos. In general, it is difficult to an-
ticipate, much less restrict, the number of queries an adversary will perform on the
side-channel observations to make inferences. Hence, understanding the efficacy of
differential privacy in mitigating side channels remains an open problem.

Zhang et al. [193] also used adversarial machine learning samples to defeat clas-
sifiers, but demonstrate that it is difficult to defeat multiple classifiers with the same
adversarial inputs. In other words, adversarial inputs cannot prevent leaks to an ad-
versary that can adapt its classifiers to circumvent the noise in victim’s observations.

Another approach is to reduce the adversary’s capabilities of performing tim-
ing measurements, for instance, by preventing access to fine-grained clock sources
or by adding noise to the reported clock values [105, 110, 170]. However, Schwarz
et al. [151] demonstrate how adversaries can generate high-precision timing mea-
surements from coarse-grained clocks and simple counter processes, thus indicating
that eliminating clock sources is an unreliable approach.

In general, one cannot anticipate the precise observation and inference capa-
bilities of an adversary. Robust side-channel mitigation solutions must therefore
assume that the adversary can learn all information contained in the resource usage
pattern of the victim.

Resource partitioning A physical resource that can be used for a side-channel leak
can be partitioned or replicated among different tenants, in order to completely pre-
vent an adversary from observing a victim’s usage of the resource. The resource can
be partitioned in two ways, spatially and temporally.

Spatial partitioning divides a resource into smaller units, each of which may be as-
signed to different tenants. Prior work has proposed partitioning of memory, caches,
and hardware performance counters to mitigate related side channels [15, 104, 197].

In contrast, temporal partitioning multiplexes, in time, a shared resource among
different tenants. Temporal partitioning can be achieved by using a time-division
multiple access (TDMA) scheduling policy [84] to schedule access to a shared re-
source. In TDMA scheduling, when a time slice is reserved for a tenant to access the
resource, no other tenant can access the resource for the duration of that time slice.
Temporal partitioning has been used to mitigate side channels due to shared cores
and core-local resources, such as L1 and L2 caches [154, 169].

20 Chapter 2. Background and Prior Work

TDMA scheduling can also be used to mitigate network side channels. Network
bandwidth can be reserved for flows at the physical layer, which would eliminate the
adversary’s (and in fact every other tenant’s) ability to observe a co-located tenant’s
traffic. However, for end-to-end mitigation, TDMA scheduling must be applied syn-
chronously along a victim’s path, i.e., the TDMA slot for a tenant’s transmission must
be enabled at the same time at all shared network elements in the victim’s path.
Implementing efficient, synchronous TDMA within a datacenter and in the Inter-
net is difficult [171]. Synchronous TDMA with short time slots would cause high
overheads for tenants’ peak workloads and waste cycles in the frequent switching
between tenants’ traffic, while TDMA with longer time slots would significantly re-
duce bandwidth utilization when the tenants’ traffic is below their peak workloads.

Both spatial and temporal resource partitioning generally reduce resource uti-
lization, and are at odds with the idea of resource sharing in a public cloud.

Usage shaping An alternate approach is to shape the victim’s resource usage pattern
to be independent of its secrets, so that an adversary cannot infer the secrets despite
observing the victim’s resource usage pattern. For example, constant-time imple-
mentation ensures that the execution time of all program paths is secret-independent.
Constant-time programming has been used to secure implementations of crypto-
graphic libraries [31–33] against execution time based side-channel leaks. However,
the technique has not been shown to generalize to large-scale software systems.
Moreover, constant-time implementation cannot mitigate leaks arising via other vec-
tors, such as the sequence of memory addresses or sizes of network packets.

Traffic shaping is a technique used to mitigate leaks via network side channels,
specifically leaks through the shape of the victim’s network traffic. Shaping involves
padding individual network packets to a secret-independent sizes, padding bursts
of fixed-sized packets to secret-independent lengths, and transmitting the packets at
a secret-independent rate [73, 148, 153].

In contrast to microarchitectural and memory side channels, network side chan-
nels are not understood well in the cloud environments. Therefore, this thesis fo-
cuses on mitigating network side channels in clouds. Furthermore, existing network
side-channel mitigation techniques do not consider threats from a co-located adver-
sary contending on a shared NIC, and therefore are inherently insufficient to miti-
gate leaks in a cloud datacenter. They are also inefficient for the bursty workloads
that arise in web services. Pacer is a system that mitigates network side channels

2.4. Side-channel disclosures 21

for cloud tenants by design. Pacer presents a secure and efficient traffic shaping
strategy, as well as a system that can enforce the shaping securely on a cloud server
without depending on any significant support from the tenant application.

23

Chapter 3

Qapla: Policy Compliance in
Database-backed Systems

This chapter describes the design, implementation and evaluation of Qapla, a sys-
tem that ensures policy compliance in database-backed applications. Qapla enables
applications to comply with complex data linking and aggregation policies, which
go beyond fine-grained cell-level access control and require constraining query op-
erators, such as join, aggregate, and group by.

As we described in Section 2.3.2, DBMSs cannot support such complex policies
in an application-transparent manner. We elaborate further on the limitations of
DBMSs with a concrete example and the need for Qapla in Section 3.1. We then give
an overview of Qapla’s key goals and design (Section 3.2), and discuss its precise
threat model (Section 3.3). We describe Qapla’s policy specification framework (Sec-
tion 3.4), the design of Qapla’s reference monitor and the enforcement mechanism
(Sections 3.5 and 3.6), and Qapla’s implementation (Section 3.7). Next, we describe
our two case studies on HotCRP and APPLY (Section 3.8), and report our evalua-
tion results (Section 3.9). We discuss Qapla’s limitations and possible extensions to
overcome them (Section 3.10). Finally, we discuss the related work (Section 3.11).

3.1 Motivation

Consider an application with a database table with the schema T(C1, C2). The ap-
plication serves three users U1, U2, and U3, and wishes to enforce the following two
policies on the data access.

(i) Users U1 and U2 can read both columns C1 and C2 independently, while only
U1 can link the two columns together.

24 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

View id View definition User access
V1 SELECT C1 FROM T U1, U2
V2 SELECT C2 FROM T U1, U2
V3 SELECT C1, C2 FROM T U1
V4 SELECT SUM(C2) FROM T U3

TABLE 3.1: View-based policy enforcement

(ii) User U3 is prohibited from reading the individual values of columns, but is
allowed to query for aggregates (e.g., SUM) on C2.

Such policies may arise, for example, in an organization’s personnel management
system where column C1 contains the names of users, column C2 contains their
salaries, and the users U1, U2, and U3 are respectively an employee in the human
resources (HR) department, an employee in a department other than HR, and a
member of an external auditing committee evaluating the organization’s pay scales.

Enforcing these policies in existing DBMSs requires creating logical views of the
table T with appropriate subsets of columns and restricting users’ accesses to the
views according to the prescribed policies. Table 3.1 summarizes the views and
access policies that need to be defined for the application to enforce the two policies.
Policy (i) requires creating views V1, V2, and V3, while policy (ii) requires V4.

Furthermore, correct enforcement of the two policies requires the application
to query the appropriate views on behalf of the users. Specifically, to enforce pol-
icy (i), the application must use views V1 and V2 when a query accesses individual
columns C1 and C2, respectively, but it must use view V3 for a query accessing the
two columns together. Similarly, to enforce policy (ii), the application must use V4

when a query is issued to access C2 by user U3.
As can be seen, view-based policy enforcement requires trusting the application

to query the correct policy-defined views. Moreover, view-based enforcement re-
quires modifying all application queries, including compliant ones, whenever views
change due to a change in policies.

One way to address the above limitations would be to add support in DBMSs to
transparently rewrite application queries with appropriate policy views. However,
this solution requires support from each DBMS vendor.

Given these challenges, many applications attempt to enforce policies themselves
within the application code [40, 41, 74, 112, 126, 127]. Essentially, every data access
is checked within the application to determine whether the user, on whose behalf the

3.2. Design overview 25

application is accessing the data, is authorized to access the data. However, inlining
of policy checks is also a cumbersome and error-prone approach. As the applications
or data policies evolve, developers potentially need to revisit all code paths to ensure
that all data accesses continue to remain policy compliant. It is easy to miss some
checks or implement incorrect checks, and trigger accidental disclosure of sensitive
data to an unauthorized user.

With Qapla, we explore the design of a policy compliance system that is inde-
pendent from both the application code base as well as the underlying DBMS. Qapla
addresses the limitations of the DBMS access control, and enables policy compliance
in a DBMS-agnostic and application-transparent manner.

3.2 Design overview

A principled approach to designing a general policy compliance system for database-
backed applications requires addressing four goals.

G1 The policy specification framework must be comprehensive and provide a uni-
form syntax for specifying a rich class of complex and fine-grained policies.

G2 The language must be simple and intuitive for the policy administrators to adopt,
and must enable specification that is easy to understand, reason about and audit.

G3 The policies should be specified directly on the data and independently from
the application codebase.

G4 Enforcement of the policies should not depend on DBMS-specific support, and
should be transparent to applications that issue policy-compliant queries.

Qapla’s design satisfies all the above goals. Qapla’s policy specification frame-
work allows specifying a rich class of policies, including standard fine-grained row-,
column-, and cell-level access control, and also complex policies that limit data link-
ing or allow specific data aggregations and transformations. The policies are specified
in a SQL-like language as a function of the database schema (but not of the individ-
ual applications built on the database), and are stored in the database independent
from the application codebase and data. For policy enforcement, Qapla integrates a
reference monitor with a generic database adapter, which intercepts all application
queries, looks up applicable policies, and rewrites queries to ensure compliance.

Figure 3.1 depicts Qapla’s architecture. Qapla’s metadata and policies are stored
in the database (in separate tables). The Qapla reference monitor authenticates with

26 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

Qapla reference	monitor

Application

Database engine

query

policy-compliant
resultpolicies

rewritten
query

tru
st
ed

un
tru
st
ed

Qapla metadata	
tables

Application	data	
tables	

authentication
credentials

FIGURE 3.1: Qapla architecture

the database with its own unique credentials, and it has the exclusive privilege to ac-
cess all tables directly. It intercepts the application’s database queries, and associates
each query with the authenticated end user on whose behalf the query was issued
by the application. The query is rewritten to ensure its compliance with policies, and
the rewritten query is executed by the database.

SQL is a natural choice for Qapla’s policy language due to several reasons. First,
SQL is widely understood and already used by developers to write database queries;
this makes it easier for them to specify policies as additional SQL syntax. Second,
SQL enables a high-level, declarative specification of policies, which makes it easier
to reason about, analyze, audit, and debug the policies compared to policies written
in application code. Finally, the SQL-like syntax of the policies simplifies Qapla’s
query rewriting for enforcement.

Because the policies are associated with the database schema, policy changes
can be affected reliably based on the schema alone, without requiring inspection

3.3. Threat model 27

of queries or modification of compliant queries by application programmer. Fur-
thermore, Qapla’s rewriting-based enforcement is transparent to application queries
that are already policy compliant, so the application has to be changed only where its
queries are not policy compliant. Qapla requires no changes to and no support from
the underlying DBMS (although we describe in Section 3.5 how database-specific
support like materialized views can be used to optimize Qapla’s performance).

Qapla is essentially a policy compliance middleware for database-backed ap-
plications. It removes the often large and rapidly evolving applications from the
codebase trusted for compliance, simplifies new applications by obviating the need
for pervasive filtering code, and avoids compliance bugs due to incorrect or miss-
ing application checks. Moreover, since the Qapla reference monitor is integrated
in a generic database adapter and does not depend on DBMS-specific access con-
trol support, it is portable across DBMSs. We demonstrate Qapla’s portability by
incorporating it with PHP’s and Python’s database adapters, and using it to enforce
fine-grained policies in two applications: HotCRP and APPLY (see Section 3.8).

3.3 Threat model

Our goal is to protect confidentiality of data in the face of application bugs and mis-
configurations. Specifically, we wish to prevent data leaks due to application bugs
that result in non-compliant queries to the database.

We assume that the application bugs do not compromise Qapla’s enforcement.
Specifically, we trust the application in two ways. First, we assume that the applica-
tion can authenticate a user, and forward the authentication information correctly to
Qapla for policy compliance. Second, we assume that the application-level bugs or
vulnerabilities cannot circumvent Qapla’s reference monitor to access the database
directly, or steal the reference monitor’s privileged database credentials. These as-
sumptions are not fundamental to Qapla’s design, and are only limitations of its
prototype. In Section 3.10 we discuss possible modifications to Qapla’s prototype to
relax these assumptions.

Qapla enforces link policies only on individual application queries, and not across
multiple queries. We assume that individual users do not link non-overlapping parts
of the database they have obtained in separate queries. We also assume that users do
not collude offline (outside the application) to combine the information they are in-
dividually authorized to read. In general, preventing all types of offline linking attacks

28 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

(linking of information across queries) is a hard problem, and we discuss potential
solutions to specific instances of the problem in Section 3.10.

We do not consider active attacks, such as SQL injection attacks that may ex-
ploit vulnerabilities in SQL’s interface1. We trust the Qapla reference monitor, the
database infrastructure comprising of the DBMS and the adapter it provides for an
application to connect to the database, the operating system, and the storage layer,
and assume that each of these are correctly configured. The database curator or
compliance team is assumed to have installed correct policies, and any informa-
tion referenced by policies is assumed to be correctly stored in the database. Under
these assumptions, Qapla guarantees that only policy compliant query results are
returned to the application.

3.4 Policy framework

In this section, we describe Qapla’s policy specification framework, and demonstrate
its use to specify confidentiality policies using specific examples.

Qapla enforces fine-grained policies on individual cells of a database. A database
cell can be accessed through four kinds of operations in a query. A cell can be (i)
accessed as part of a column access, (ii) linked with other cells of the row or with
rows from other tables, (iii) accessed after a transformation, or (iv) accessed after
aggregation with other cells, i.e., an aggregated value including the cell value can be
accessed. Qapla’s policies can specify constraints on each kind of cell operation.

One way to specify the policies would be to enumerate all the cells in a database
and associate explicit policies with each cell. However, this would blow up the num-
ber of policies that need to be specified, as well as the space overhead for storing the
policies. Fortunately, cells within individual columns tend to have a similar policy
template, with policies differing only in a few parameters. The parameter values
may depend on the state or value of the same cell or other cells, columns, or rows
in the database, or on conditions such as time. Thus, Qapla policies are specified
as templates applicable to sets of columns, which describe restrictions for various
query operations on the columns and individual cells.

Every Qapla policy applies to a class of queries based on the way the query oper-
ates on different columns. The policy specifies how those queries must be restricted
to be compliant. The restrictions are specified as SQL WHERE clauses that are added

1However, Qapla can defend against a limited class of SQL injection attacks in the application layer
that attempt to read unauthorized portions of the database. We discuss this further in Section 3.5.2.

3.4. Policy framework 29

to the query by Qapla before the query is executed. Qapla executes the rewritten
query, thus filtering out non-compliant records. An application can obtain a tuple
using a query only if (a) at least one policy applies to the query, and (b) the query
rewritten under the restrictions of the applicable policies produces the tuple. If no
policy applies to a query, the query is not executed. This whitelist principle ensures
that data is accessed only due to some explicitly written policy and never leaked
due to accidental omission of policies. We formally define when a policy applies to
a query and the query rewriting procedure in Section 3.5.

We now reveal the features of Qapla’s policy specification framework incremen-
tally through a series of policies for an example personnel management system. We
consider the human resources database of a fictitious company called Acme. The
database has three tables:

(i) Employees(empID, name, address, age, gender, dept),

(ii) Payroll(empID, salary), and

(iii) Benefits(empID, health_plan).

The first table maps employees to their home address, age, gender and department.
The second table maps employees to their salary, while the third table specifies
which health insurance plan each employee subscribes to.

3.4.1 Single column policies

The simplest Qapla policy protects a single database column by specifying which
rows (cells) of the column can be accessed by each user, and when. It has the form:

col :- FILTER-CONDITIONS

Here, FILTER-CONDITIONS is of the form T:W, where T is the table containing the
column col and W is a SQL WHERE clause that specifies which rows from col can
be returned. FILTER-CONDITIONS may refer to the authenticated user and the wall
clock time using the variables $user and $time, respectively, which are instantiated
by the Qapla reference monitor when the clause is added to the query. The policy
applies to any query that references only the column col (queries that read more
than one column are subject to link policies described later).

30 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

Example 1 (name, age, health_plan) The names of Acme’s employees should be
accessible to all other employees. The following policy specifies this.

name :- Employees : EXISTS(SELECT 1 FROM Employees

WHERE empID = $user)

The SQL fragment EXISTS(. . .) specifies a condition that holds only if the authenti-
cated user exists in the table Employees. An identical policy applies to the columns
age and health_plan. Note that employees can access each of these columns only in
isolation, which only allows enumerating the names, ages or health plans of all em-
ployees separately, but does not allow, for example, knowing the employees’ ages.

Example 2 (address, salary) The columns address and salary can be read only by
members of the HR (human resources) department. Additionally, an employee may
read his or her own address or salary. The following policy enforces this on address.
A similar policy applies to salary.

address :- Employees : ((empID = $user) OR

EXISTS(SELECT 1 FROM Employees

WHERE empID = $user AND dept = HR))

Compared to the policy of name, this policy allows different employees access to
different entries in address. Note that the WHERE clause is organized as a disjunction
of conditions, one for each class of users.

This is an example of a role-based access control (RBAC) policy, where an em-
ployee’s role is dictated by her affiliation with a particular department. This policy
relies on the availability of the mapping from users to their roles in the database
itself. In applications where this mapping is outside the database (e.g., on a file sys-
tem), Qapla’s policy language can be easily extended to support predicates that look
up this mapping outside the database. Qapla can interpret these non-database pred-
icates in the policies using native procedures, and apply the remaining SQL policy
to the database queries.

3.4.2 Link policies

When a query reads two or more columns, more information can be exposed by link-
ing the columns to each other than what is exposed from the columns individually.

3.4. Policy framework 31

Therefore, an additional policy is required to prevent such linking. The applicable
policy can even be more restrictive than the individual policies of all the columns
read, as in the following example.

Example 3 (linking name and age) The policies of the columns name and age allow
any employee to read these columns individually (Example 1). However, not every
employee should be able to read the columns name and age together since that reveals
every employee’s age, which may be private. The right policy is that only members
of HR and an employee himself/herself may read the employee’s name and age to-
gether. In Qapla, this policy is expressed by mentioning both columns age and name

to the left of :- in the policy.

{name, age} :- Employees : ((empID = $user) OR

EXISTS(SELECT 1 FROM Employees

WHERE empID = $user AND dept = HR))

Such policies, which apply to simultaneous access of two or more columns, are called
link policies. Their general form is

{col1, . . . , coln} :- FILTER-CONDITIONS

with FILTER-CONDITIONS of the form T1:W1 , . . . , Tm:Wm. Here, {col1, . . . , coln} are
columns spanning the tables T1, . . . , Tm and W1, . . . , Wm are separate WHERE clauses
for these tables, respectively. The link policy applies to any query that reads a sub-
set of the columns {col1, . . . , coln} (for any purpose including projection, selection,
joining, grouping or aggregation). The WHERE clauses of all the tables mentioned in
the query are added to the query by Qapla (see Section 3.5 for details).

Columns in separate tables When the goal is to restrict the linking of data in two
or more separate tables, the effect of a link policy can sometimes be simulated by
simply restricting access to the individual columns containing the common keys
of the two tables. However, when different sets of columns spanning the tables
need different policies, the policies must be specified using the general form of link
policies described above.

32 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

3.4.3 Transformation policies

Applications often apply functions or transformations to columns to hide sensitive
information. A transformed column could have more permissive policies than the
column itself. Qapla directly supports such transformations-aware policies.

Example 4 Suppose Acme provides a home-to-office shuttle service to its employ-
ees, run by Acme’s “logistics” department. The shuttle service has a fixed stop in
every neighborhood that houses an employee but it is not door-to-door. In order
to provide this service, members of the logistics department must know the neigh-
borhood in which every employee lives, but not their precise home addresses. To
enforce this, the privacy compliance team can create a user-defined function (UDF),
neigh, that maps an address to a neighborhood, and add the following Qapla policy.

{name, address[neigh]} :- Employees : ((empID = $user) OR

EXISTS(SELECT 1 FROM Employees

WHERE empID = $user AND

(dept = HR OR dept = logistics)))

This policy says that an employee’s name and neigh(address) can be linked by the
employee, members of HR, and members of logistics. The policy is strictly more
permissive than the policy on {name, address}, which allows access only to the re-
spective employee and HR, but not to logistics. The revised policy allows logistics
to run the query

SELECT name, neigh(address) FROM Employees

but not
SELECT name, address FROM Employees

The general form of a Qapla transformation policy is

{col1[t1], . . . , coln[tn]} :- FILTER-CONDITIONS

The FILTER-CONDITIONS are of the same form as in a link policy. The policy applies
to any query that accesses a subset of the columns col1, . . . , coln but only after the
respective transformations t1, . . . , tn have been applied.

3.4. Policy framework 33

3.4.4 Aggregation policies

Many applications declassify aggregate statistics on otherwise private columns. Ac-
cordingly, Qapla provides aggregation policies. An aggregation policy specifies two
sets of columns: 1) LS (link set)—columns which can be projected, used to join or
group data (SQL’s GROUP BY) or be aggregated in a query, and 2) JS (join set)—
columns which can be used only to join tables in the query and nothing else. With
each column in LS an optional transformation or aggregation operation can be spec-
ified, which restricts the use of that column to only that transformation or aggrega-
tion. The general syntax is

{JS = {jcol1, . . . , jcolm}, LS = {col1[t1], . . . , coln[tn]}} :- FILTER-CONDITIONS

Example 5 Suppose Acme has a workers’ council (WoC) that periodically computes
salary statistics to ensure fairness in worker compensation. One statistic it computes
is the distribution of average salary over age ranges (20-30 years, 30-40 years, etc.).
Rather than provide WoC full access to the Employees table, the policy compliance
team can selectively provide WoC rights to compute only such statistics by writ-
ing the following aggregation policy. Here, age_range is a function that rounds an
individual’s age to a 10-year range.

{JS = {Payroll.empID, Employees.empID}, LS = {age[age_range], salary[AVG]}} :-
Payroll, Employees : EXISTS (SELECT 1 FROM Employees

WHERE empID = $user AND

(dept = HR OR dept = WoC))

This policy allows WoC to run any query that joins tables Payroll and Employees,
and then uses only age_range(age) and average on salary (in any way). For exam-
ple, it allows queries similar to the following two instances:

(i) SELECT AVG(salary), age_range(age)
FROM Employees JOIN Payroll ON empID

GROUP BY age_range(age) HAVING AVG(salary) > 50000

which lists age groups with average salaries above 50000.

(ii) SELECT AVG(salary) FROM Employees JOIN Payroll ON empID

WHERE age_range(age) = (30, 40)

which lists the average salary of a specific age group.

34 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

Correctly, the policy does not allow queries that look at the age or salary columns
directly. For instance, the following query is disallowed by the policy:

SELECT AVG(salary) FROM Employees JOIN Payroll ON empID

WHERE age = 75

Indeed, such queries can be used to identify the salary of individuals with unique
ages by repeating the query for every age value, and therefore must be disallowed.

3.4.5 Relation between policy classes

Qapla’s four policy classes—single-column policies, link policies, transformation
policies and aggregation policies—are increasingly more general. Single-column
policies are an instance of link policies, where the set of linked columns is a sin-
gleton. Link policies are a special case of transformation policies where the transfor-
mations are identity functions. A transformation policy S :- FILTER-CONDITIONS is
the same as the aggregation policy {JS = {}, LS = S} :- FILTER-CONDITIONS.

3.4.6 Policy inference heuristics

To reduce the compliance team’s burden of specifying policies, Qapla provides three
safe heuristics for automatically determining the policies on column sets in a schema.

Heuristic 1: A link policy for a set of columns also automatically applies to any
subset of those columns since reading a subset only reveals less information than
does reading the whole set. Thus, there is no need to specify a link policy on a
subset unless the subset’s policy is strictly more permissive than the policy of the
whole set, and some application needs the permissiveness.

Heuristic 2: If a query uses column transformations or aggregations but a specific
applicable transformation or aggregation policy does not exist, Qapla applies the
link policy of the set of columns that occur in the query, if one exists. This is safe
because transforming or aggregating a column always reduces the amount of infor-
mation revealed.

Heuristic 3: In place of writing an explicit link policy on a set of columns, the de-
signer can explicitly instruct Qapla to automatically construct a link policy for a set
of columns by combining the policies of the individual columns in the set. This syn-
thesized policy applies the conjunction of the FILTER-CONDITIONS of the individual

3.5. Enforcement 35

columns even when they are read together. This is useful in some cases. For instance,
we may want to allow only HR members and an employee simultaneous access to
the employee’s name and address. However, this is exactly the policy of the individ-
ual column address (Example 2). Therefore, for such cases, the policy language can
be extended to specify a keyword on the column set (here {name, address}) which
can instruct Qapla to synthesize the link policy for the column set by combining the
policies of the individual columns (here name and address).

3.5 Enforcement

Qapla’s policy enforcement on a query consists of two steps: (i) Identifying the set
of policies that apply to the query, and (ii) Rewriting the query to filter out tuples
disallowed by all the applicable policies. We describe the two steps in detail.

3.5.1 Identifying applicable policies

Internally, Qapla treats every policy as an aggregation policy of the form {JS, LS} :-
FILTER-CONDITIONS, where JS and LS are, respectively, the set of columns that may
be used to (only) join two or more tables, and the set of columns that may be pro-
jected, grouped by and aggregated. As explained in Section 3.4.5, this is the most
general form of policies; all single-column, link and transformation policies can be
expressed in this form. Qapla parses every application query to extract the corre-
sponding sets js and ls of columns that are used only to join and those that the
query actually projects, groups by, or aggregates.

A policy applies to a query if the query’s use of the columns js and ls is al-
lowed by the corresponding sets JS and LS of the policy. Formally, the policy ap-
plies to the query when js ⊆ JS and when every column c and every transformed
column c[t] in ls is dominated by a column or transformed column in LS. Domi-
nation is defined as follows: Every (transformed) column dominates itself, and a
column dominates any transformation of itself. Thus, the following policy with
{JS = {Benefits.empID, Employees.empID}, LS = {age, health_plan}} applies to
a query with js = {Benefits.empID, Employees.empID} and ls = {age[age_range],
health_plan[COUNT]}. Figure 3.2 summarizes this algorithm.

To efficiently find all policies that apply to a query, Qapla maintains two data
structures. The first data structure maps every pair of a column and a transformation
(that applies to the column) to a bitvector representing the policies in the system. The

36 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

1 # Does a policy apply to a query?

2 input: Query Q
3 input: Policy pol of form {JS, LS} :- FILTER-CONDITIONS

4 output: true if pol applies to Q, false otherwise

5 {js, ls} = parseQuery(Q)
6 if (js 6⊆ JS) then return false

7 for each column c in ls
8 if (c 6∈ LS) then return false

9 for each transformed/aggregated column c[t] in ls
10 if (c[t] 6∈ LS and c 6∈ LS) then return false

11 return true

FIGURE 3.2: Algorithm to decide if a policy applies to a query

ith bit is set in the bitvector of the (transformed) column j if policy i’s LS contains a
column that dominates j. To find all applicable policies whose LS matches a given
query’s ls, Qapla simply takes the bit-wise AND of the bitvectors of all (transformed)
columns in ls. The second data structure is similar but applies to JS and allows
finding all policies whose JS matches a query’s js. Finally, Qapla takes the bit-wise
AND of the two bitvectors to find the policies that must be applied to the query.

3.5.2 Query rewriting algorithm

The query rewriting algorithm modifies an application query to make it compliant.
In the simple and common case where only one policy applies to the query (only one
policy bit set in the final bitvector generated from the identification step), the policy
rewriting algorithm replaces each reference to a table in the query with a subquery
of the form (SELECT ∗ FROM table WHERE list-of-conditions), where list-of-conditions
are the FILTER-CONDITIONS for the table provided in the policy. Each subquery gen-
erates a list of rows compliant with the FILTER-CONDITIONS of the columns accessed
from the table. The overall effect is that the application query is executed over joins
of policy-compliant subtables of the database tables, where the subtables are created
using the FILTER-CONDITIONS of the applicable policy.

3.5. Enforcement 37

Example 6 In the context of Acme’s database, assume that some link policy exists
for the column set {name, age, health_plan, Employees.empID, Benefits.empID} and
that it specifies the WHERE clauses fE and fB for filtering the tables Employees and
Benefits, respectively. Consider the following query: SELECT name, age, health_plan
FROM Employees JOIN Benefits ON Employees.empID = Benefits.empID. This query
will be rewritten to:

SELECT name, age, health_plan FROM

(SELECT ∗ FROM Employees WHERE fE) Employees JOIN

(SELECT ∗ FROM Benefits WHERE fB) Benefits ON

(Employees.empID = Benefits.empID)

When more than one policy applies to a query and the query does not return an
aggregate, Qapla rewrites the query according to each applicable policy and takes a
SQL UNION of these. This ensures that a tuple exists in the result only when at least
one applicable policy allows it. If the query returns an aggregate value and more
than one policy applies, Qapla picks the first applicable policy, but the application
may override this to a specific applicable policy at the cost of minor changes to its
code. (We have not encountered the need for such changes in our evaluation.)

Protection against SQL injection attacks Although not the focus of our work,
Qapla’s policy enforcement mechanism provides protection against a limited form
of SQL injection attacks aimed at violating database confidentiality. Below we give
an example of the kind of attacks Qapla can protect against. Consider an application
query of the form:

SELECT ∗ FROM Employees WHERE Employees.empID = $var

The parameter $var is populated at runtime with the id of the authenticating user.
An adversary may attempt to perform a SQL injection attack by passing a string
of the form “X OR (1 = 1)′′. In absence of proper input sanitization, the adver-
sary would be able to read the entire Employees table from the database. Qapla’s
reference monitor, which rewrites queries after parameter resolution, would replace
the Employees table with a subquery consisting of the link policy for the link of all
columns of the table. The link policy would be at least as restrictive as the conjunc-
tion of individual policies of all columns. Thus, the adversary’s query would be

38 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

rewritten as:

SELECT ∗ FROM

(SELECT ∗ FROM Employees WHERE fempID AND fname AND ... fdept) Employees

WHERE Employees.empID = X OR (1 = 1)

The adversary’s query will only be able to access a subset of the table compliant with
all the columns’ policies.

3.5.3 Optimizations

Next we describe three heuristics to reduce the overheads of policy enforcement dur-
ing runtime. In our current prototype we implement the first optimization, and the
second optimization partially. Implementing the third optimization is not difficult.

3.5.3.1 Query template cache

The Qapla reference monitor implements a query template cache to amortize the
overhead of parsing and rewriting queries with the same structure. A query tem-
plate is a query with all its constant values replaced with placeholder variables. The
Qapla template cache maps query templates to their rewritten forms. When a query
is received, Qapla converts the query to a template and checks if a query template
with the same hash is cached (if the application query is already parametrized, Qapla
hashes it directly). For a hit, Qapla retrieves the associated rewritten query template,
and binds its variables with the values from the submitted query. For a miss, Qapla
parses and rewrites the query with the applicable policies, and inserts the resulting
rewritten query template into the cache.

3.5.3.2 Partial evaluation

The Qapla reference monitor often generates complex rewritten queries containing
several nested subqueries accessing one or more tables, and having large filter con-
ditions. Executing the query efficiently depends on the ability of the DBMS to gen-
erate an efficient execution plan for the rewritten query. To reduce the complexity
of the rewritten query, Qapla can pre-evaluate parts of the rewritten query that do
not depend on database values (e.g., parts that depend only on time, or the iden-
tity of the user on whose behalf the application makes the access) before posting the
query to the database. This can significantly simplify the query since any predicates

3.6. Compatibility with legacy applications 39

connected by ‘AND’ to a pre-evaluated predicate that is false can all be replaced by
a single false before the query is sent to the database. Similarly, any predicates con-
nected by ‘OR’ to a pre-evaluated predicate that is true can all be replaced by a single
true. In our prototype we only pre-evaluate time-based conditions.

3.5.3.3 Materialized views

To offset the cost of policy checks during query evaluation, Qapla can create materi-
alized views, one for each (group of) user(s) with similar permissions, by applying
applicable policies to the tables offline. In a group’s materialized view, every cell
inaccessible to the group is replaced with a special value that is not a legal value for
the underlying table. At runtime, every application query is run against the materi-
alized view appropriate for the authenticated user. The query is rewritten by Qapla
to disregard any record that contains the special value in a field that is used in the
query. Note that for confidentiality, it is insufficient to disregard a record only when
one of its inaccessible fields is projected. It is also necessary to disregard a record if
one of its inaccessible fields will be tested by the query’s WHERE clause(s). Doing so
prevents implicit information leaks through the WHERE clause(s).

Our preliminary evaluation suggests that this optimization can reduce runtime
overheads on read-intensive workloads by an order of magnitude. However, pro-
portional to the number of user groups with different policies, maintaining mate-
rialized views adds storage cost and runtime overhead to propagate updates to all
materialized views.

3.6 Compatibility with legacy applications

The policy enforcement algorithm described in Section 3.5 drops a row during query
execution if any field in the row is inaccessible according to the policy and is used
in the query. This row-suppression mode of policy enforcement ensures that infor-
mation about an inaccessible field cannot be inferred even when that information
is correlated with other fields in the row. This makes row-suppression a very safe
choice for policy enforcement (and, hence, Qapla uses it by default). However, row-
suppression is not the only possible way of enforcing Qapla’s policies. We briefly
describe here a second mode of policy enforcement, the cell-blinding mode.

40 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

The primary consideration for the cell-blinding mode is compatibility with legacy
applications, which may issue broad queries that project more columns than actu-
ally necessary, and eventually remove the extra columns in their own code. With
the row-suppression mode, such broad queries may result in fewer records than
expected by the application. Transitioning such applications to make them compat-
ible with row-suppression may require effort and time, as developers may have to
rewrite queries to not project unnecessary columns. This transition can be particu-
larly difficult when the set of necessary columns depends on the application state.

The cell-blinding mode changes the semantics of policy enforcement to compro-
mise some security and efficiency in return for accommodating overly broad queries.
In this mode, Qapla rewrites the application queries to replace (blind) inaccessible
cells with special values that can be returned in results, before executing the original
query’s logic. (This replacement is identical to the replacement of inaccessible cells
in the creation of materialized views from Section 3.5.3, but here the special values
must not depend on any secrets since they can be returned directly in query results.)

However, the cell-blinding mode has two drawbacks. First, if some fields of a
record are inaccessible according to the policy, the record is still returned (with the
inaccessible fields blinded). This leaks some information when the presence of the
record in the database is sensitive and when blinded fields are correlated with other
non-blinded fields. Second, the cell-blinding mode imposes significant overhead on
query execution (up to two orders of magnitude for some queries with MySQL) due
to the need to check policies on, and possibly blind, individual cells in every query.
We believe that the use of materialized views described in Section 3.5.3 can reduce
this overhead substantially. A full study of this approach remains as future work.

Due to these limitations of the cell-blinding mode, it is preferable to use the row-
suppression mode and to modify the application to restrict overly general queries.
Qapla uses only the row-suppression mode of policy enforcement.

3.7 Implementation

The Qapla implementation consists of ~20,000 lines of C code. It provides the API to
create application-specific policies, associates policies with column identifiers in the
database schema, and maintains an in-memory mapping from column identifiers to
associated policies. It also provides an API for setting application-specific user au-
thentication parameters (e.g., login credentials) in the reference monitor. Qapla uses
an existing SQL parser from the MySQL workbench [121] to extract accessed tables

3.8. Case studies 41

and columns. The SQL parser consists of ~1.01 million lines of C code. A rewrite
module implements the lookup for applicable policies and the query rewriting al-
gorithm. A template cache module maintains a cache of rewritten query templates,
and a customizable translation module can translate the SQL dialect of one DBMS to
that of another, allowing Qapla uses across DBMSs. In our evaluation, we translate
MySQL queries into a commercial DBMS’s queries.

Qapla can support existing PHP and Python based applications. For PHP ap-
plications, we modified the PHP Data Objects (PDO) [137] module in the PHP in-
terpreter. For Python applications, we rely on the Django framework [39], which
provides an object-relational mapping (ORM) API for database interaction. Django
provides a database-independent abstraction to the application developer. We mod-
ified this abstraction and interface with the Qapla reference monitor using the ctypes
library. Both PDO and Django can be used to connect with different databases, such
as MySQL, SQLite, MSSQL, and Oracle. Modifications to PDO and Django were
limited to 135 and 141 lines of code, respectively.

3.8 Case studies

Next, we describe our use of Qapla to ensure compliance in HotCRP and APPLY.

3.8.1 HotCRP

Policies We studied HotCRP’s schema and wrote policies based on our knowl-
edge of its workflow. In many cases, we reverse-engineered HotCRP’s policies by
inspecting its code base to confirm and correct our intuition. In total, we specified
35 policies for the 22 tables and 215 columns in the schema of HotCRP version 2.99,
which supports a broad range of configurations for a conference. The policies cover
a single-track conference with a double-blind submission process, handling of chair
conflicts with paper managers, and a review process with no rebuttal.

Table 3.2 shows a subset of the policies associated with important tables like con-
tacts, papers, reviews, and conflicts. The full set of policies is listed in Section 3.12.
The policies are explained in plain English for clarity and brevity of exposition but
are actually written in the language introduced in Section 3.4. Macros abbreviate
common SQL fragments that appear in many policies. Many of the policies are fine-
grained access control predicates on user, time, and the content of various database
tuples. There are also link and aggregation policies.

42 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user U access
to row R if ...

C3
Contact-
Info

contactId

(U is a chair or PC) OR (R is contact
information of chair or a PC member)
OR (R is U’s contact information) OR (R
is contact of U’s coauthor)
OR (notification deadline has passed, U
is on PC, and R is contact of an
accepted paper’s author)

P5 Paper leadContactId

(U is R’s paper manager) OR (U is a
non-conflicted PC member and has
submitted a review for R) OR (review
discussion has started and U is R’s
paper manager or a non-conflicted PC
member)

R1
Paper-
Review

reviewId, paperId,
<review content>,
reviewSubmitted

(P5 conditions) OR (R is a sub-review
and U is the reviewer who asked for it)
OR (notification deadline has passed
and U is R’s author or a non-conflicted
PC member)

R2
Paper-
Review

contactId,
reviewRound,
requestedBy,
reviewType, ...

(P5 conditions) OR (R is a sub-review
and U is the reviewer who asked for it)

Con
Paper-
Conflict

paperId, contactId,
conflictType

(U is R’s author) OR (U is a chair) OR (U
is a PC member identified by R’s
contactId) OR (notification deadline has
passed and U is a chair or a PC
member)

AO Paper
Total number of
submissions and
accepted papers

the notification deadline has passed

AR3
Paper-
Review

Average review
score across all
submitted reviews

U is a PC member

AR4
Paper
Review

Number of reviews
by each PC member

U is a PC member and statistics
excludes each row conflicted with U

TABLE 3.2: Subset of HotCRP policies

3.8. Case studies 43

Link policy example An author can independently view the names of all PC mem-
bers, her own paper submission, and the reviews for her papers after the notification
date. However, the author is not allowed to see the join of the three columns, which
reveals the reviewers’ identities. In the HotCRP schema, these columns reside in
three different tables (ContactInfo, Paper, and PaperReview). The PaperReview ta-
ble can be joined with Contact via the contactId key column, and with Paper via the
paperId key column. The link policy can be implemented by specifying a restrictive
policy for PaperReview.contactId, which does not allow the author to read the col-
umn (R2 in Table 3.2). The policy prevents PC authors from identifying reviewers
of their own papers, yet allows them to know and participate in discussions with
reviewers of non-conflicted papers.

Aggregation policy example During the review and discussion process, HotCRP
provides aggregate statistics to all reviewers. The statistics include the average re-
view score across all papers as well as the number of reviews submitted by each
PC member. To allow this feature to function correctly, we specify two aggregate
policies (AR3 and AR4 in Table 3.2), one allowing an AVG computation on the over-
AllMerit score field and the other allowing a COUNT on the review field grouped
by PC member. In the second case, conflicted papers must be excluded.

Type of change Lines of code

Replace MySQLi with PDO adapter 96

Change paper query 110

Change review query 25

Change comment query 17

Authentication with Qapla 5

TABLE 3.3: HotCRP changes for Qapla

Implementation effort We replaced the MySQLi database adapter [138] normally
used in HotCRP with our modified, Qapla-enabled PDO adapter. We modified
HotCRP to forward the user authentication credentials to the Qapla reference moni-
tor. (Apache was configured to fork a separate process for each HotCRP user session,
so there is a separate instance of the adapter/reference monitor for each session.)

44 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

HotCRP uses broad queries and relies on post-filtering to remove the informa-
tion the user should not see. We changed approximately 150 LoC in HotCRP’s code
to make these queries policy compliant so that they can work with Qapla. In most
cases, we added a couple of queries to identify the contextual information required
to convert the broad queries into more specific queries. With Qapla in place, we can
remove the post-filtering queries, but we ignored them for now. Table 3.3 summa-
rizes the changes we made in HotCRP.

3.8.2 APPLY

We briefly describe our use of Qapla to protect the application management sys-
tem (APPLY) for managing faculty, PhD, post-doc, and internship applications in
our organization. APPLY’s database is similar to the fictitious Acme database from
Section 3.4 and the confidentiality concerns are also similar. The database contains
user accounts for applicants and reviewers, contact and application details of the
applicants, references, and internal application review aspects such as comments.
Users within the organization are assigned roles based on what application type
(intern, PhD, postdoc, faculty) they are allowed to access. APPLY prevents review-
ers from accessing applications created before they joined the organization. Ad-
ditionally, APPLY allows explicit delegation of the right to view (sets of) applica-
tions to specific users or roles, and disallows a user from accessing an application in
case of a conflict of interest. A single policy condition, listed below, covers a large
number of columns across many tables. We refer to this condition with the macro
HAS_APP_ACCESS(U, A):

User U has access to application A if :

(A is U’s own application) OR

((U joined before A was submitted) AND

(U has no conflict of interest with A) AND

((U is faculty) OR (U has been delegated access to A)))

3.9. Evaluation 45

There are additional restrictions on many sensitive columns and exceptions for other
roles. For example, users cannot see reference letters written for them and an appli-
cant’s country of birth and citizenship cannot be seen by reviewers until the appli-
cation has been accepted (to prevent discrimination). Office staff can access all ap-
plicant names, emails, and postal addresses (to correspond with them) and CVs of
accepted applicants (to prepare contracts). In total, we wrote 46 policies for APPLY.
The complete list of policies is provided in Section 3.13

Implementation effort APPLY is implemented using Django and Python, and stores
its data in a database comprising 36 tables and 202 columns. The modifications nec-
essary for APPLY were quite similar to those required for HotCRP. First, we modi-
fied 10 LoC to pass user authentication credentials to the Qapla reference monitor.
Second, we changed 63 LoC to remove unused columns from queries to make them
compatible with our policies.

3.9 Evaluation

In this section, we present results of an experimental evaluation of Qapla’s overhead
when used with HotCRP. We also perform a brief security evaluation by injecting
HotCRP bugs that existed in older versions.

3.9.1 Experimental setup

All experiments were performed on Dell Precision T1600 workstations with an In-
tel Xeon E3-1225 3.1Ghz quad core CPU, 8GB main memory, and 10Gbit Ethernet
links. The client and server machines were running OpenSuse Linux 12.1 (kernel
version 3.1.10-1.29, x86-64). The HotCRP server software consisted of Apache HTTP
server 2.4.18, PHP 5.6.15, and HotCRP 2.99. By default, the backend database for
each application was MySQL Server 5.7.11. In some experiments, we used instead
a well-known commercial DBMS, which remains unnamed due to license restric-
tions on the publication of benchmark results. Both DBMSes were configured with a
query cache of 500MB, unless stated differently. By default, the experimental results
correspond to a setup with MySQL with the query cache, unless stated otherwise.

For HotCRP, we used an anonymized database snapshot of a major conference
hosted on HotCRP in the past. The database included about 150 submissions, over
400 contacts, and over 700 reviews. The papers were reviewed in 3 rounds.

46 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

Baseline query Policy summary

Q1 select title, abstract from Paper
where paperId=X

paper author or PC member and the pa-
per is under submission

Q2
select title, overAllMerit from
Paper join PaperReview where
paperId=X

paper author after notification or PC
member who is not a conflict and has
submitted his/her review and the paper
is under submission

Q3

select title, overAllMerit, re-
viewerName from Paper join
PaperReview join ContactInfo
where paperId=X

PC member who is not conflicted and
has submitted his/her review and the
paper is under submission

TABLE 3.4: Microbenchmarks queries

3.9.2 Microbenchmark

The first experiment measures Qapla’s latency overhead on individual queries. Qapla
introduces overheads associated with query parsing, query rewriting, and execut-
ing the rewritten query in the database. Table 3.4 lists the actual HotCRP queries
we used in the experiment. Figure 3.3 shows the average query latency over 1000
trials on MySQL and on the commercial DBMS. The Qapla latency is broken down
into three components: query parsing (Qaplaparse), query rewriting (Qaplarewrite),
and execution of the rewritten query (Qaplaexec). The error bars show the standard
deviation. In this experiment, the query caches of the backend DBMSes and Qapla’s
template cache were disabled.

The contribution of query parsing and rewriting is small, particularly for the
more complex queries (on MySQL, 23%, 15%, 8% of the overall query latency for
Q1, Q2, and Q3 respectively). The query rewriting overhead is slightly larger with
the commercial DBMS, because Qapla has to translate HotCRP queries, which were
written for MySQL, to use a SQL syntax appropriate for that DBMS.

In all cases, Qapla’s latency overhead is dominated by the execution time of the
rewritten queries. A query rewritten with policy conditions may be significantly
more complex than the original query as each table in the query is replaced with
a subquery, which may access additional tables that appear in the policy. The effi-
ciency of the rewritten query depends on the database query optimizer being able
to generate an efficient query plan. The costs of executing the rewritten queries are

3.9. Evaluation 47

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2
MySQL

Q3 Q1 Q2
Commercial DBMS

Q3

L
a

te
n

c
y
 (

m
s
)

Baseline
Qaplaexec

Qaplarewrite
Qaplaparse

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2
MySQL

Q3 Q1 Q2
Commercial DBMS

Q3

L
a

te
n

c
y
 (

m
s
)

Baseline
Qaplaexec

Qaplarewrite
Qaplaparse

FIGURE 3.3: HotCRP query latency on MySQL and a commercial
DBMS (baseline is measured without Qapla).

lower with the commercial DBMS, whose query optimizer likely is more sophisti-
cated than that of MySQL. Thus, while the commercial DBMS has a slightly higher
baseline latency, it is able to execute the rewritten queries faster than MySQL, reduc-
ing Qapla’s overhead substantially for the more complex queries Q2 and Q3.

Our experiment inflates Qapla’s true overheads to some extent, because the rewrit-
ten query may require accessing tables that are not mentioned in the original query
to ensure compliance. HotCRP accesses these same tables in a separate query to
perform the filtering in its own code. To understand this further, we measure the
overheads for traces of queries corresponding to user actions in the next experiment.

3.9.3 Application latency benchmarks

A user task in HotCRP and APPLY typically involves multiple actions, such as log-
ging in, clicking on a url to visit a page, and clicking on a button to save a form. For
each action, the application in turn issues several SQL queries to get the required
data for the response and for policy compliance checks. In this section, we measure
the overhead for the sequence of SQL queries involved in several application user
tasks. We recorded the SQL queries issued for each of the tasks, and replay the query
trace with and without Qapla.

We measured the overhead for executing the query traces and the client-perceived
latency overhead under various configurations of the baseline and Qapla. Base is the

48 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

baseline system, Qapla is Qapla, and Qaplat-cache is Qapla with the template cache
enabled. In all configurations, the query cache of the backend DBMS was enabled.

3.9.3.1 HotCRP

In HotCRP, we measured four user tasks: H1: As an author, view reviews for a
submission (resulting in two actions). H2: As a PC member, search for a paper with
a keyword, and add a comment (resulting in four actions). H3: As PC chair, search
for a paper with a keyword, and declare a conflict with a PC member (resulting
in five actions). H4: As PC chair, invoke the automatic review assignment for all
submissions (resulting in three actions).

Task trace execution overhead First, we measured the average time for executing
the traces for tasks H1-H4 on MySQL and the commercial DBMS, respectively, under
the three configurations and across 1000 trials (all standard deviations are below 5%).

With MySQL, the relative overheads of Qaplat-cache are 6x, 4.7x, 5.4x, and 7.8x
for the tasks, respectively. With the commercial DBMS, the relative overheads of
Qaplat-cache are 2.5x, 6.5x, 3.8x, and 2.9x. The results for Qaplat-cache show that
Qapla’s query template cache is effective in reducing the overhead resulting from
Qapla’s query parsing and rewriting. The template cache hit rates for each action
are 25%, 71%, 82%, and 99%, respectively, yielding a reduction in Qapla’s overhead
of up to 22%, relative to Qapla, for H4 with the commercial DBMS. In the case of H1,
we observe a net increase in overhead, because the cost of maintaining the template
cache cannot be offset due to the low hit rate.

Client-side latency To measure latencies from the perspective of a Web client, we
executed each task with a client-side driver that issues HTTP requests to HotCRP for
each action involved in performing the task manually. The driver fetches the static
HTML pages (but excludes dynamic content such as css, javascripts) from HotCRP
and stores them locally. Thus, the experiment includes the overheads of executing
PHP code, including database queries, and sending the HTML pages over the net-
work. The template cache as well as the database query cache were flushed after
each iteration of a task to fully expose worst-case latency overheads.

Figure 3.4 shows the average latency across 1000 trials of the action with the
highest relative overhead in Qaplat-cache (all standard deviations are below 0.05%).
The latency overheads for the actions are 40%, 25%, 47%, and 320%, respectively.

3.9. Evaluation 49

H1 H2 H3 H4
HotCRP highest action overhead in each task

0

1

2

3

4

No
rm

al
ize

d
la

te
nc

y

59.7 101.6 93.7 1517.5

Base Qaplat cache

FIGURE 3.4: HotCRP client latency of highest overhead action
normalized to Base. Labels show Base absolute latency numbers in ms.

Note that the overheads are conservative and could be further reduced by removing
the redundant post-filtering queries in HotCRP, as discussed in Section 3.8.1.

Most of the latency is due to the PHP execution (including database queries),
while the network overhead is minimal (0.2ms on average). All the actions are per-
formed in less than 150ms, except the reviewer assignment generation in H4, which
takes 1.5s in Base and 6.4s in Qaplat-cache. The assignment algorithm invokes ~3780
queries for the given set of papers and reviewers, while the remaining actions in-
voke less than 45 queries. H4 is a task used by the PC chair(s) only, and normally
only a few times per conference, depending on the number of reviewing rounds.

3.9.3.2 APPLY

In APPLY, we measured the following tasks: A1: As an applicant, view the status of
a submitted application (resulting in 3 actions). A2: As the faculty member in charge
of post-doc applications, mark the status of multiple applications to reject, and send
rejection emails to the marked applications (resulting in 7 actions). A3: As a faculty
member, search for an applicant by name, and request recommendation letters from
the applicant’s recommenders (resulting in 7 actions). A4: As a student reviewing
doctorate applications, see a list of doctorate applications currently under review,
and view the details of a single application (resulting in 4 actions).

50 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

A1 A2 A3 A4
APPLY highest action overhead in each task

0
1
2
3
4
5
6

No
rm

al
ize

d
la

te
nc

y

129.2 89.1 98.7 50.2

Base Qaplat cache

FIGURE 3.5: APPLY client latency of highest overhead action
normalized to Base. Labels show Base absolute latency numbers in ms.

Task execution trace overhead With MySQL, the relative overheads of Qaplat-cache

are 5.35x, 5.4x, 5.2x, and 4.5x for A1-A4, respectively. With the commercial DBMS,
the relative overheads are 4.2x, 3x, 3.3x, and 3.3x, respectively.

Client-side latency Figure 3.5 shows the average latency, across 100 trials, of the
action with the highest relative overhead in Qaplat-cache (all standard deviations are
below 12%). The latency overheads for the four actions are 12.5%, 74%, 6.25x, and
34%, respectively. The high overhead in action A3 is due to a single query with
very high runtime, which is the cause of nearly all the overhead. On investigating
the query behavior, we found that the performance overhead is due to the MySQL
query optimizer’s inability to deal with a specific query pattern, possibly because
this pattern is unlikely to occur in hand-written queries. When we ran the same
query on the commercial DBMS, the overheads came down to approximately 50%.

3.9.4 HotCRP throughput benchmark

For most HotCRP actions, latency is the metric of interest, as it affects user-perceived
delays. Right before a submission deadline, however, throughput is also a mea-
sure of interest, because many authors re-submit a final revision of their submission
within the last minutes before a deadline. To examine the performance under such

3.9. Evaluation 51

1 2 4 8 16 32 64
Active concurrent clients

0

5

10

15

20

Th
ro

ug
hp

ut
(S

ub
m

iss
io

ns
/s

)

Base
Qaplat cache

FIGURE 3.6: Submission throughput

conditions, we measured the number of submissions per second HotCRP can sustain
with and without Qapla.

In this experiment, clients concurrently upload submissions of size 356KB, which
is close to the average submission size in the past HotCRP conference deployment.
We varied the number of concurrent clients from 1 to 64. 32 clients were sufficient to
saturate the CPU. Prior to the experiment, we cached the entire conference database
(∼880MB) in memory. Figure 3.6 shows the number of submissions per second our
HotCRP installation can sustain for different numbers of concurrently connected
clients. The results were averaged across 3 runs, each of 120s. The error bars show
the standard deviation across 3 runs. The overheads are moderate (below 20.2%),
and can be compensated by provisioning a somewhat faster server.

3.9.5 Comparison with DBMS access control

Some production DBMS systems support fine-grained access control over tables and
views to a limited extent [140, 161]. In this section, we compare using Qapla to en-
forcing policies directly in our commercial DBMS, which unlike MySQL has some
support for fine-grained access control. More precisely, this database supports the
equivalent of our single-column policies through a special configuration mechanism.
We specified many of the HotCRP policies through this mechanism. However, as
shown in section 3.8.1, HotCRP requires richer policies (such as link and aggregate

52 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

H1 H2 H3 H4
HotCRP actions

0

2

4

6

8

No
rm

al
ize

d
la

te
nc

y

6.8 26.2 41.0 890.8

Base
DBaccess control
Qaplat cache

FIGURE 3.7: HotCRP action latency with policies enforced using a
commercial DBMS’s native support for fine-grained access control,
normalized to Base. Labels show Base absolute latency in ms.

policies), which cannot be expressed using the DBMS’s policy mechanism. To en-
force these policies, we had to create additional views on all HotCRP tables, restrict
access to those views and update all queries, whether compliant or not, to use views
rather than the underlying tables.

We ran the experiments from section 3.9.3 to compare the performance of the
DBMS access control mechanism with that of Qapla. Figure 3.7 shows the average
latency for HotCRP actions, across 100 trials, normalized to Base. The error bars
show the standard deviation. Qapla policy enforcement overhead is lower than the
overhead of enforcing policies through the DBMS access control for most actions.

The results show that using the native support for fine-grained access control
in the commercial DBMS is less efficient than Qapla’s policy enforcement. More-
over, to get this level of performance from the commercial DBMS, we had to care-
fully tune its cache configuration for this experiment. Qapla, on the other hand,
achieves better performance with both MySQL and the commercial DBMS, has a
DBMS-independent policy language, and does not require the use of views and the
resulting changes to compliant queries.

3.9. Evaluation 53

Log entry High-level task reads Count

Create/update account User logs in, visits his/her profile 1090

Register, update, submit,
or withdraw paper

User logs in, visits the submission page 2082

Added reviewer
Chair logs in, visits the paper’s reviewers
assignment/conflicts

1335

Set paper lead/shepherd Chair logs in, visits the paper’s page 126

Save/submit/delete
review/comment

Reviewer logs in, visits the paper’s page 3279

Download paper(s)
Reviewer logs in, visits the paper’s page,
downloads the paper

2582

Send accept/reject
notification

Chair logs in, sends decisions to contact
authors

2

TABLE 3.5: Trace actions for HotCRP

3.9.6 Compatibility analysis

We also verified whether HotCRP-Qapla can correctly execute all the user actions
performed in a HotCRP deployment across various stages of the conference, and
produce the same output as the unmodified HotCRP. We used a trace of anonymized
user actions from the logfile of the HotCRP deployment. The logfile contains over
10,000 log entries that correspond to HotCRP database updates. From it, we con-
structed a trace by inspecting the HotCRP codebase to determine the set of SELECT
queries that typically precede a specific update. For example, submitting a review
for a submission must have been preceded by viewing the submission page. Since
update queries are not subject to policy checks in Qapla, they are not of interest
to our experiment and were not included in the trace. Table 3.5 shows the actions
performed for each log entry.

The trace consists of actions corresponding to four phases: submissions, review,
discussion, and post notification stage. We replayed the entire trace against the orig-
inal HotCRP and HotCRP-Qapla and compared the outputs. Because the trace is
read-only, we replayed it against the final state of the HotCRP database at the end
of the conference review period. As a result, several policies were not exercised

54 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

the way they would be in a real deployment and, consequently, the outputs of ap-
proximately 27% of the actions differed with and without Qapla enforcement (e.g.,
withdraw link enabled or not, papers may have been withdrawn at a later stage of
the conference). Most of these actions were in the first phase. We verified separately
that the relevant policies are enforced as expected.

We found that approximately 3% of action outputs differed for other reasons.
These reasons are: (i) some non-compliant queries we have not yet modified (e.g.,
chair unable to make assignments to conflict papers), (ii) policies that are more re-
strictive than HotCRP assumes (e.g., conflicted PC members unable to download the
paper), and (iii) missing policies (e.g., external reviewers not considered).

3.9.7 Security validation

To verify that Qapla is effective at preventing accidental data leaks, we performed
fault injection experiments. We manually reviewed HotCRP’s change logs for bugs
that caused data leaks and other policy violations [75]. We are confident that Qapla
can prevent any data leaks that are related to missing or incorrect filtering code in
HotCRP, which appear to account for the majority of cases.

As a sanity check, we reproduced two sample bugs HotCRP had in the past.
One bug notified authors about changes to PC-only fields during response periods.
Another bug allowed PC members to search for papers based on their acceptance
status and learn of the acceptance of their papers prematurely. We simulated these
bugs by making changes to the policy check functions implemented in HotCRP, or
by removing the invocations of these functions at certain places in the application.
We executed user actions on the buggy HotCRP application with and without Qapla
and manually examined the outputs. We verified that Qapla prevents the data from
being revealed to unauthorized parties.

There is one class of data leaks that Qapla cannot prevent by itself, namely
when a policy depends on incorrect data recorded in the database. For instance,
if HotCRP failed to record the conflicts declared by users correctly in the database,
Qapla could not prevent the associated leak. We have not found instances of such
bugs in HotCRP’s change logs, but it is possible that such bugs might occur.

3.10. Discussion 55

3.10 Discussion

We discuss some limitations of Qapla’s current threat model and ideas on how to
strengthen the design to eliminate these threats. We also discuss how Qapla can be
used for logging policy violations.

3.10.1 Isolation of the reference monitor

Currently, we assume that the application, which runs in the same address space
as the reference monitor, cannot circumvent the reference monitor or steal its au-
thentication credentials. However, this is not a fundamental limitation. To provide
guarantees against a malicious application, we can also isolate the reference monitor
in a separate process [14, 55], or co-locate it with the DB servers. There are also ef-
ficient ways of isolating the reference monitor within the application address space,
such as using light-weight contexts [102].

3.10.2 User authentication

Qapla’s current design requires the application to specify on which user’s behalf it is
acting. An application may specify the wrong user to Qapla due to a bug, thus break-
ing Qapla’s policy enforcement. This problem can be easily addressed by having the
user authenticate to the reference monitor instead of the application. The application
can then ask for the authenticated user’s identity from the reference monitor.

3.10.3 Protection against offline linking attacks

Qapla does not protect against offline linking attacks that span multiple queries. For
two queries whose results can be linked offline (such as in example 3), randomizing
the order of query results may mitigate the attack in some cases. However, ran-
domizing the order of query results cannot eliminate linking attacks in all cases. In
particular, some linking may be possible due to information contained in the data
itself (e.g., names may have high correlation with the nationality of users, or fine-
grained aggregate queries may reveal individual records). We expect the policy de-
signer to be aware of potential data leaks of this type, and design the policies such
that compliant queries return a minimum threshold number of results (similar to k-
anonymity [158]). Tools to check such conditions on policies can be easily designed.

56 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

3.10.4 Support for logging

A natural question is whether we can modify Qapla’s reference monitor to detect
and log non-compliant queries (e.g., for debugging or auditing). While this is not a
design goal, Qapla can be used to detect non-compliant queries to a limited extent
– by re-running a query twice, with and without policy checks and comparing the
results for any differences. Non-compliant queries can then be logged.

3.11 Related work

We compare Qapla with related work on database access control support in both
research and industry, and information flow control systems handling fine-grained
database data in applications.

3.11.1 Database access control

The database community has explored fine-grained access and disclosure control
within databases, using SQL conditions [96], queries against restricted authoriza-
tion views [145], and data-derived security views [10]. A formal framework for the
design of database access control is presented by Guarnieri et al. [66]. In contrast
to these systems, Qapla’s goal is to provide a portable policy layer that works with
existing DBMSs and applications, without relying on any support for policies within
the DBMSs.

DataLawyer [165] is a database middleware system that analyzes and rejects
non-compliant queries to a relational DBMS. Policies are stated as SQL queries on
the database and a usage log, which contains provenance information. DataLawyer
supports rich policies, motivated, for instance, by medical databases. Since policies
are associated with the entire database, each query must be checked against all poli-
cies, each requiring a separate query. Qapla policies are more restricted (e.g., they
cannot refer to provenance), but Qapla is much more efficient because policies are
indexed by columns. Also Qapla policies are expressed directly as filter conditions,
making them easy to write and understand.

In the context of link policies, DiMon [16], its extension D2Mon [162] and Biskup’s
work [13] enforce access policies by relying on an explicit, complete specification of
information that a querier can infer from past queries. These systems deny a query
when the query would allow the inference of policy-prohibited information. Qapla’s

3.11. Related work 57

approach is complementary and easier to implement and use; we require the spec-
ification of only access rules, abstracting away the inferences those accesses would
allow. If indeed a complete specification of possible inferences were to exist, it could
be used to assist the policy designer understand the consequences of Qapla policies.

Turan et al. [163] present an algorithm to partition a database schema such that
two pieces of data that should not be linked (according to a policy) lie in separate
logical subschemas. This could be a useful optimization for certain policies in a
Qapla deployment. However, it cannot be used for policies where, of three columns,
any two may be linked together, but all three may not be linked simultaneously.

IVD [108] is an authorization system deployed in Facebook, which automatically
learns write access control rules on their graph database system from production
logs, and enforces them at runtime. Qapla’s focus, on the other hand, is on read
access control and link policies in relational DBMSs.

SafeD [51] enforces access control policies in a database adapter, similar to Qapla.
However, the scope of policies is different in SafeD and Qapla. SafeD supports row-
level access control policies on both read and write queries in database applications.
Qapla does not support write policies, but it supports fine-grained cell-level access
control, linking and aggregate policies.

3.11.2 Access control in production DBMSs

Current production DBMSs support access control at various levels of granularity.
However, the extent of support and the language used to express policies varies
among DBMSs and, as far as we know, no DBMS can support all of Qapla’s policies
without requiring changes to either the schema or queries (including queries that are
policy compliant). Qapla enforces fine-grained policies without requiring changes to
the schema or policy compliant queries, and requires no support for such policies in
the backend DBMS. Moreover, as shown in section 3.9.5, Qapla’s overhead is lower
than a commercial database’s native support for fine-grained policies.

Oracle VPD [161] provides extensive support for cell-level access control on ta-
bles and views. However, a policy on a table cannot depend on the results of a
query on the table itself. Such policies occur in our applications. For instance, the
first clause in policy C1 in Table 3.2 checks that the user is the chair, which is defined
using the table that the policy protects. Such policies can be enforced in VPD only
by either changing the schema or creating additional views. The use of views, in
general, also requires changing queries to use the views instead of the underlying

58 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

tables. On the other hand, automatic query rewriting as in Pacer is transparent to
applications that issue policy compliant queries.

IBM DB2 [147] and SQL Server [155] require a combination of row-level (data-
dependent) access control and column masking policies to specify fine-grained poli-
cies, which can obscure the policy specification. PostgreSQL [140] has support for
row-level policies, but they apply to all columns of a table uniformly. A policy on
a subset of columns requires the creation of a view containing only those columns.
MySQL and MariaDB do not support data-dependent access control. Fine-grained
access control in these DBMSs requires creating a separate view for every group of
users with the same privilege, or creating stored procedures and granting privileges
to users to execute the procedures [77, 141].

In all production DBMSs we know of, enforcing link policies requires creating
a separate view for each policy. Transformation and aggregation policies require
separate views or stored procedures. As mentioned above, creating additional views
or using stored procedures requires significant changes even to applications that
issue only policy-compliant queries.

3.11.3 Database interposition

Interposing on database queries to improve security is a common technique. Per-
haps most closely related to our work is CLAMP [134], which has the same goals
as Qapla. However, CLAMP’s architecture and policy language are different from
Qapla’s. In CLAMP, when a user initiates a session, the enforcement framework
performs user authentication, instantiates a logical view of the database restricted
only to data that the user can access (based on applicable policies), and isolates a
fresh instance of the application in a virtual machine, restricting it to only commu-
nicate with the authenticated user and giving it access to only the logical view of the
database via query interposition (as in Qapla). CLAMP’s design supports a stronger
threat model than Qapla’s current prototype—CLAMP isolates user sessions from
each other and from the reference monitor, and does not rely on the application to
authenticate the user (see Section 3.10)—but the expressiveness of policies, which
is really the focal point of our work, is limited in CLAMP. CLAMP only supports
per-table policies, which specify the rows that each user has access to. Support for
finer policies that differentiate columns of a table from each other or take into ac-
count linking, transformation and aggregation is missing in CLAMP. Qapla can be

3.11. Related work 59

strengthened with CLAMP’s isolation and authentication techniques in a straight-
forward manner.

Diesel [55] is a framework for applying the principle of least privilege on rela-
tional databases. Diesel policies specify subsets of a database that each application
module can access. For example, a policy may specify that a user-facing module can
only access the Users table, but not administrative tables, thus limiting damage in
the event of a user session compromise. This is very different from Qapla’s (and
CLAMP’s) goal of specifying what data each user can access. Nonetheless, Diesel
also relies on query interposition (as in Qapla) to enforce its policies.

Passe [14] hardens the web framework Django to isolate application modules
from each other. Like Diesel, it uses query interposition to enforce least privilege on
data accessible to each module. Unlike Diesel, but like CLAMP and Qapla, Passe’s
policies are sensitive to the authenticated user. However, Passe’s policies are fun-
damentally different from those of Qapla, CLAMP and Diesel—they enforce data-
dependency relations on query parameters. For example, a Passe policy may enforce
that the third parameter of the second query made by a specific application module
is always a value returned for the first query of the module. Moreover, Passe’s poli-
cies are not specified by administrators. Instead, they are learnt by automated testing
in an offline phase. This learning can have both false positives (it may learn a policy
that is too restrictive) and false negatives (it may not learn a required policy). Due
to the very different nature of Passe’s policies, it is not possible to directly compare
their expressiveness to that of Qapla’s policies.

3.11.4 Policy specification frameworks

EPAL [7] and XACML [50] are platform-independent frameworks that enable de-
signing declarative policy specifications for enterprise and web applications, respec-
tively. They enable specifying fine-grained policies in terms of users, data, actions,
system environment. However, both EPAL [7] and XACML [50] are frameworks,
which need to be implemented by each application separately. In contrast, Qapla
is a full system with a generic specification framework that can be used for any ap-
plication backed by a relational DBMS. Unlike EPAL and XACML, Qapla does not
support purpose as a first-class element in the policy specification, and instead relies
on authentication-based access control. Finally, EPAL and XACML support policies
on high-level user actions in the system, such as view, edit, delete, whereas Qapla
specifies polices on operations within individual application queries.

60 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

Other systems, such as Soutei [139], SecPAL [9], and Guardat [166] have used
Datalog [97] language to develop declarative specifications. For instance, Guardat
uses a domain-specific policy language based on Datalog to support policies on files
based on users, roles, system time, and state and content of files. Qapla instead uses
SQL syntax to specify policies, similar to [29, 96]. SQL is a natural choice to specify
policies for database-backed applications, since it enables specifying complex poli-
cies on query operators easily, and developers are already familiar with it.

3.11.5 CMS confidentiality

CoCon is a new conference management system whose confidentiality properties
were verified formally in the Isabelle proof assistant [85]. On the other hand, Qapla
is a general, language-independent runtime compliance layer for database queries,
which we have used to enforce compliance in an existing and widely used confer-
ence management system, HotCRP.

3.11.6 Privacy in statistical databases

Differential privacy [42] and privacy-preserving queries [24, 111] are focused on sta-
tistical databases, where only statistical information, but no information about in-
dividual records, should be revealed. Qapla instead focuses on applications that
require access to specific database records, subject to fine-grained policies.

3.11.7 Information Flow Control

UrFlow [29], Hails [60], Jacqueline [187], DBTaint [37], RESIN [190], LabelFlow [28]
and Nemesis [35] use language-based techniques to enforce information flow con-
trol in web applications written in specific languages. In contrast, Qapla can be
ported to any language easily but it enforces access policies, not information flow
control. Qapla can be integrated with a language-based technique to control infor-
mation flow with fine-grained policies.

IFDB [150] enforces authorization policies by modifying the PostgreSQL database
engine, as well as the application environments in PHP and Python. For enforcing
column policies, IFDB relies on declassifying views. Row policies are specified with
secrecy and integrity labels, which are associated with database records. IFDB en-
forces row policies by tracking the labels through the application process and stored

3.12. HotCRP policies specified in Qapla 61

procedures. Qapla specifies all policies using one mechanism. Qapla’s enforcement
uses query rewriting and is database-agnostic.

Sif [30], SeLINQ [149], and Li et al. [99] assign labels or security types to database
columns, and use security-typed programming languages to write restricted query
interfaces to the database and the application code. However, these systems can-
not enforce data-dependent policies. Furthermore, some of these systems [99, 149]
rely on programming applications in languages that integrate database query mech-
anisms. While the current prototype of Qapla focuses on applications using SQL to
query databases, it can be easily extended to protect applications using other pro-
gramming paradigms for database queries. Qapla does not impose any restrictions
on the programming language for the applications themselves.

3.12 HotCRP policies specified in Qapla

Table 3.6 below lists the complete set of policies that we implemented on the schema
of HotCRP 2.99 application and used in Qapla’s evaluation. The schema consists of
22 tables, but the workflows in our evaluation did not involve two tables. So we only
specified policies on 20 tables. The first column provides a policy identifier, which
is used only for ease of exposition and reference. The second and third columns re-
spectively indicate the table and the set of the table’s columns in the HotCRP schema
that the policy applies to. The last column explains the policy in English. The actual
policy is written in Qapla’s SQL-like syntax (Section 3.4) and follows the structure
of the English description.

id table column list
allow the authenticated user
U access to row R if ...

C1 Contact-
Info

name, affiliation

(U is a chair) OR (R is U’s
contact information) OR (R is
contact of U’s coauthor) OR (U
and R are on the PC) OR (R is
contact of a PC member) OR

(notification deadline has
passed, U is on PC, and R is
contact of an accepted paper’s
author)

62 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user
U access to row R if ...

C2 Contact-
Info

email

(U is a chair) OR (R is U’s
contact information) OR (R is
contact of U’s coauthor) OR (U
and R are on the PC) OR

(notification deadline has
passed, U is author of an
accepted paper, and R is
contact of a paper’s shepherd)

C3 Contact-
Info

contactId

(U is a chair or PC) OR (R is
contact information of chair or
a PC member) OR (R is U’s
contact information) OR (R is
contact of U’s coauthor)
OR (notification deadline has
passed, U is on PC, and R is
contact of an accepted paper’s
author)

C4 Contact-
Info

password
(R is U’s contact information)
OR (U is a chair)

C5 Contact-
Info

passwordTime, fax number (R is U’s contact information)

C6 Contact-
Info

last login, contact tags,
collaborators

(R is U’s contact information)
OR (U is on the PC and R is
info of a PC member)

3.12. HotCRP policies specified in Qapla 63

id table column list
allow the authenticated user
U access to row R if ...

P1 Paper
paperId, title, abstract,
timeSubmitted,
timeWithdrawn

(U is R’s author)
OR (submission deadline has
not passed and U is on the
PC) OR (submission deadline
has passed, U is on PC, and R
was submitted fully)

P2 Paper
authorInformation,
collaborators

(U is R’s author or chair) OR

(notification deadline has
passed, R was accepted and U
is on the PC)

P3 Paper outcome

(notification deadline has
passed and U is R’s author or
chair or PC) OR (U is R’s paper
manager or a non-conflicted
PC member)

P4 Paper shepherdContactId

(notification deadline has
passed and U is R’s author or
chair) OR (U is R’s paper
manager or a non-conflicted
PC member)

P5 Paper leadContactId

(U is R’s paper manager) OR (U
is a non-conflicted PC member
and has submitted a review for
R) OR (review discussion has
started and U is R’s paper
manager or a non-conflicted
PC member)

P6 Paper managerContactId
(U is a chair or R’s manager or
a non-conflicted PC member)

64 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user
U access to row R if ...

P7 Paper
paperStorageId, size,
paper, <other paper
metadata>

(U is R’s author or chair) OR

(submission deadline has
passed, R was submitted fully,
and U is chair or PC)

AO Paper

{JS: {}, LS: {outcome,
timeSubmitted,
timeWithdrawn,
Paper.*[COUNT]}}

the notification deadline has
passed

PS
Paper-
Storage

paperId, paper, <other
paper metadata>

(U is R’s author or chair) OR

(submission deadline has
passed, R was submitted fully,
and U is chair or PC)

R1
Paper-
Review

reviewId, paperId, <review
content>, reviewSubmitted

(P5 conditions) OR (R is a
sub-review and U is the
reviewer who asked for it) OR

(notification deadline has
passed and U is R’s author or a
non-conflicted PC member)

R2
Paper-
Review

contactId, reviewRound,
requestedBy, reviewType,
reviewEditVersion,
reviewToken,
timeRequested,
commentsToPC, <other
fields only for PC>

(P5 conditions) OR (R is a
sub-review and U is the
reviewer who asked for it)

AR3
Paper-
Review

{JS: {}, LS: {contactId,
overAllMerit[AVG]}}

(U is R’s paper manager or
chair or a PC member)

3.12. HotCRP policies specified in Qapla 65

id table column list
allow the authenticated user
U access to row R if ...

AR4
Paper-
Review

{JS: {}, LS: {contactId,
reviewSubmitted,
reviewNeedsSubmit,
PaperReview.{*}[COUNT]}}

(U is R’s paper manager or
chair or a PC member and
statistics excludes each row
conflicted with U)

AR5
Paper-
Review

{JS: {}, LS: {paperId,
reviewSubmitted,
reviewNeedsSubmit,
PaperReview.{*}[COUNT]}}

same as AR4

Con
Paper-
Conflict

paperId, contactId,
conflictType

(U is author of the paper
identified by R’s paperId)
OR (U is a chair) OR (U is a PC
member identified by R’s
contactId) OR (notification
deadline has passed and U is
chair or a PC member)

PT
Paper-
Tag

paperId, tag, tagIndex
(U is a chair or a PC member or
manager of the paper
identified by paperId)

RR
Review-
Rating

<all columns>
similar to R2, but specified on
ReviewRating table

Com1
Paper-
Com-
ment

contactId, replyTo

(R is a submitted comment and
U is R’s paper manager or U
wrote R) OR (review discussion
has started, R is a submitted
comment, and U is R’s paper
manager or non-conflicted PC
member)

66 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user
U access to row R if ...

Com2
Paper-
Com-
ment

commentId, comment,
paperId, paperStorageId,
commentType,
commentTags,
commentRound,
commentFormat,
timeModified,
timeNotified

(Com1 conditions) OR

(notification deadline has
passed, R is a submitted
comment, R is marked for
authors, and U is author of the
paper identified by R’s
paperId)

TI
Topic-
Interest

contactId, topicId, interest
(U is chair) OR (R is U’s interest
entry)

Top
Paper-
Topic

topicId, paperId
(U is author of R’s paper) OR

(R’s paper is fully submitted
and U is chair or a PC member)

AL
Action-
Log

logId, contactId, paperId,
time, ipaddr, action

U is R’s paper manager or a
non-conflicted chair

ML
Mail-
Log

<all columns> U is chair

RReq
Review-
Request

<all columns>

U is R’s paper manager or a
non-conflicted chair or a PC
member who requested for the
review R

PRR
Paper-
Review-
Refused

<all columns>
Similar to RReq, but on
PaperReviewRefused table

PRP

Paper-
Review-
Prefer-
ence

<all columns>

U is R’s paper manager or a
non-conflicted chair or a
non-conflicted PC member
who submitted preference R

3.13. APPLY policies specified in Qapla 67

id table column list
allow the authenticated user
U access to row R if ...

PO
Paper-
Option

<all columns>
U is R’s paper manager or chair
or a PC member or author of
the paper with options R

PW
Paper-
Watch

<all columns> U is chair or a PC member

S Settings <all columns> public

F
For-
mula

<all columns> public

T
Topic-
Area

<all columns> public

TABLE 3.6: Set of HotCRP policies

3.13 APPLY policies specified in Qapla

Table 3.7 below lists the complete set of policies that we implemented on the schema
of APPLY application and used in Qapla’s evaluation. A common policy fragment
that appears in many policies is denoted by the macro HAS_APP_ACCESS(U, A), which
expands to the following conditions:

User U has access to application A if :

(A is U’s own application) OR(
(U joined before A was submitted) AND

(U has no conflict of interest with A) AND(
(U is faculty) OR (U has been delegated access to A)

))

68 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user
U access to row R if ...

A1 fa_application cv
HAS_APP_ACCESS(U, R) OR (U is a
member of the office staff and the
application is accepted)

A2 fa_application
user_id, phone,
address

HAS_APP_ACCESS(U, R) OR U is a
member of the office staff

A3 fa_application
status, app_type,
archived

U is a member of the review
committee or the office staff

A4 fa_application

id, created_date,
updated_date,
minor_status, url,
rejec-
tion_sent_date

HAS_APP_ACCESS(U, R)

Deg fa_degreeinfo <all columns>

(R corresponds to an inter app
and HAS_APP_ACCESS(U, app))
OR (R corresponds to a PhD app
and HAS_APP_ACCESS(U, app))

DA
fa_doctorate-
application

<all columns> HAS_APP_ACCESS(U, R)

FA
fa_faculty-
application

<all columns> HAS_APP_ACCESS(U, R)

IA1
fa_internship-
application

application_id,
birthday, under-
graduate_id,
field_id

HAS_APP_ACCESS(U, R)

IA2
fa_internship-
application

birth_country,
birth_city,
citizenship

R corresponds to an application,
the application is accepted, and
HAS_APP_ACCESS(U, app)

3.13. APPLY policies specified in Qapla 69

id table column list
allow the authenticated user
U access to row R if ...

Tag fa_personaltag
id, application_id,
user_id

R’s user_id corresponds to U and
HAS_APP_ACCESS(U, R)

Ref1 fa_reference

id, applicant_id,
reference_id,
status,
first_sent_date,
last_sent_date,
tempname

R is a reference for an app and
HAS_APP_ACCESS(U, app)

Ref2 fa_reference letter

U joined before R’s
corresponding application was
submitted and U has no conflict
of interest with app and (U is
faculty or U has been delegated
access to app)

Ref3 fa_reference direct_web_key U is the sysadmin

EB1
fa_email-
binding

activation_key R’s user_id corresponds to U

EB2
fa_email-
binding

id, user_id, email

(R is the contact info of U’s
referrer) OR (R is the contact info
of an application’s referrer and
HAS_APP_ACCESS(U, app)) OR (U
is R’s owner)

RER
fa_reference-
emailrequest

id, requestor_id,
reference_id,
created_date

U is a faculty and R is a reference
for an application and
HAS_APP_ACCESS(U, app)

70 Chapter 3. Qapla: Policy Compliance in Database-backed Systems

id table column list
allow the authenticated user
U access to row R if ...

SF1 fa_specificfield

id, abbrev,
fullname,
faculty_pot,
intern_phd

public

SF2 fa_specificfield priority
U is a member of the review
committee

TA fa_trackapp
id, user_id,
application_id

HAS_APP_ACCESS(U, R)

AS1
fa_apptype-
settings

id, app_type,
from_addr,
reference_sub,
reference_body,
rejection_sub,
rejection_body

U is a member of the review
committee or office staff

AS2
fa_apptype-
settings

letter_deadline,
reference-
_deadline_type

U is a member of the review
committee

Role fa_role
id, user_id,
role_id

(U is R’s owner) OR U is a faculty

RR1 rbac_rbacrole id, name same as Role

RR2 rbac_rbacrole desc, order public

Conf fa_conflicts
id, user_id,
application_id

U is a faculty

CF
django-
_comment-
_flags

id, user_id,
comment_id, flag,
flag_date

U is a sysadmin OR (U is R’s
owner and R is a comment on an
app and HAS_APP_ACCESS(U, R))

3.13. APPLY policies specified in Qapla 71

id table column list
allow the authenticated user
U access to row R if ...

DF
fa_delegation-
_filters

id, delegatee_id,
delegator_id,
is_revoked, ... <all
columns>

U is a faculty OR (R is delegated
to U and R is not revoked)

AD
fa_approved-
_delegations

id, delegatee_id,
is_revoked,
app_id, ... <all
columns>

similar to DF

AU1 auth_user
id, first_name,
last_name, email

U is R’s owner OR U is a member
of the office staff OR (R is info of
an applicant and
HAS_APP_ACCESS(U, app)) OR (R
is info an applicant’s referrer and
HAS_APP_ACCESS(U, app))

AU2 auth_user

username,
password,
date_joined, ...
<other columns>

U is R’s owner OR U is the
sysadmin

DCom
django-
_comments

id, object_pk,
user_name,
user_email,
comment,
submit_date,
is_public

R corresponds to an app and
HAS_APP_ACCESS(U, app) and (U
is a faculty or R is a public
comment)

Sys
<all other
tables>

<all columns> U is the sysadmin

TABLE 3.7: Set of APPLY policies

73

Chapter 4

Pacer: Network Side-Channel
Mitigation in the cloud

This chapter describes the design, implementation, and evaluation of Pacer, a sys-
tem to mitigate a specific class of side-channel disclosures, namely the network side-
channel disclosures. We start with a discussion of how network side-channel disclo-
sures work (Section 4.1). We then describe our threat model (Section 4.2), and our
key ideas for designing a secure and efficient mitigation solution (Section 4.3). We
present our novel cloaked tunnel abstraction (Section 4.4), Pacer, our paravirtualized
cloaked tunnel implementation for an IaaS cloud that requires modest changes to a
hypervisor and guests (Section 4.5), and a gray-box profiler that automatically gen-
erates traffic shapes for a guest (Section 4.6). We describe Pacer’s implementation in
Section 4.7 and our experimental evaluation in Section 4.8. In Section 4.9, we discuss
potential extensions to Pacer’s design to mitigate additional leaks and for computing
more efficient traffic shapes. Finally, we discuss related work in Section 4.10.

4.1 Network side channels

We first discuss the high-level concept of a network side-channel attack. We then
demonstrate a proof-of-concept attack in cloud settings, which can leak sensitive
information, such as the videos streamed.

4.1.1 Background

As briefly discussed in Section 2.4, a network side-channel disclosure, like all other
side-channel disclosures, involves two steps. Here we elaborate on how network
side-channel disclosures work.

74 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

First, an adversary observes the shape of the victim’s traffic. An adversary with
access to network elements like links, switches, or routers can observe the traffic di-
rectly. An adversary without direct access can still observe victim traffic indirectly if
they can control attack traffic that shares bandwidth with the victim’s traffic. Specif-
ically, when bandwidth is shared, then regardless of the queueing discipline, avail-
able bandwidth and queueing delays observed by one flow are influenced by con-
current flows, and therefore can be exploited for a side-channel attack. An adver-
sary can easily rent VMs in an IaaS cloud to indirectly measure the victim’s traffic at
a shared server’s network card or a top-of-the-rack switch. Such indirect measure-
ments significantly lower the barrier for mounting network side-channel attacks,
which would otherwise be limited to adversarial network operators or other parties
with direct access to a victim’s network traffic. Indeed, prior work has demonstrated
attacks based on indirect observations of the victim’s traffic [4, 144, 146].

Extensive prior work has shown that various features of traffic shape can be ob-
served thus; these features may include total number and sizes of packets [26, 36,
157], their timing [20, 63], more coarse-grained features such as burst lengths, fre-
quency of bursts and burst volumes [43, 176, 180], as well as a combination of such
features [67, 100, 148].

Once an adversary has the traffic shape, it can then infer the victim’s secrets.
Traffic shape has been shown to reveal rich information about the underlying com-
munication, including what a user is typing [153], what webpage is being visited [73,
172] and which video is being streamed [146], what phrases are being used in VoIP
conversations [180], and even the private keys of communication partners [17, 18].
Chen et al. [25] demonstrate that even more sensitive information like users’ medi-
cal conditions, family income, and investment secrets [25] can be gleaned from the
shape of the encrypted traffic of healthcare, taxation, investment, and web search
services implemented on software-as-a-service offerings.

4.1.2 Attack demonstration

To demonstrate the viability of network side channel attacks through indirect mea-
surements in cloud settings, we set up an attack where an adversary exploits the
signals in the queueing delays for its own traffic to infer the victim’s traffic shape.
Further, using a convolutional neural network (CNN) [64], the adversary can recog-
nize streamed videos from the traffic shapes with high accuracy.

4.1. Network side channels 75

4.1.2.1 Experimental setup

We set up two VMs, a victim and an attack VM, on two separate CPU sockets of a
Dell PowerEdge R730 server machine (S1). The VMs use Xen’s virtualized network
stack; thus all traffic is routed through the netback driver and the TCP stack in dom0
of the hypervisor. We configure S1’s shared NIC with a bandwidth of 1Gbps, and
the hierarchical token bucket (HTB) queueing discipline [72]. We further create two
separate HTB traffic classes for (i) the attack traffic, and (ii) the victim traffic and rest
of the traffic through the host. We configure the attack traffic to have a lower priority
than all other traffic.

The victim hosts a custom video streaming service on top of Apache, which
serves video segment files in response to client requests. A custom video client
runs on a second server (S2), and requests the video segments sequentially over
HTTPS. The attack VM runs a UDP client that sends short payloads (56 bytes) to a
UDP server on a third machine (S3), which logs the packet arrival timestamps and
echoes back the packets to the client. S2 and S3 have 10Gbps NICs and all machines
are connected to a 10Gbps switch; thus the bottleneck link is the shared NIC at S1.
The attack client maintains a send window of 4,500 packets (computed based on the
bandwidth-delay product for the NIC), which ensures that some attack packets are
always queued at the bottleneck link without overflowing the queue.

We streamed 10 videos at 720p resolution from a YouTube dataset (a detailed
description of the dataset is given in Section 4.8) for upto 30 segments. Segments take
less than 0.02s to download, and segments within a video are requested at an interval
of 5s. We streamed each video 150 times. During each video stream, we log the series
of arrival timestamps of the adversarial client’s packets at the adversarial server. We
label each time series of the adversary’s packet arrival timestamps with the id of the
video streamed by the victim. Thus, we have 1500 time series of adversary’s packet
arrival timestamps with 10 distinct labels.

4.1.2.2 Analysis

We aggregated each time series into windows of 50ms, and generated a time series
of the adversary’s transmitted packet count in each window. The packet count is
the number of packet arrival timestamps recorded in each time window. Finally, we
normalized each packet count time series using min-max normalization [117].

Next, we implemented a CNN classifier to train on the time series of normalized
packet counts. Figure 4.1 shows the architecture of our classifier, which consists

76 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

Input:
1 x n

32 x 1 x (n-15)
ReLU

Conv
1 x 16

32 x 1 x (n-30)
ReLU

Conv
1 x 16 32 x 1 x (n-45)

ReLU
Dropout 0.2

Conv
1 x 16

32 x 1 x (n-45)/6
ReLU

Dropout 0.2

Max
Pooling

1 x 6

64
ReLU

Dropout 0.2

Dense Output:
classes
softmax

Dense

FIGURE 4.1: CNN architecture. n denotes the number of elements of
one time series, which is the total time of the time series divided by the
window size (50ms).

of three convolution layers, a max pooling layer, and two dense layers. We use a
dropout of 0.2 between each pair of hidden layers of the classifier as shown in the
figure. We train the classifier with an Adam optimizer [88], categorical cross-entropy
error function, and with input batches of 64 samples. Our CNN classifier is similar
to the one built by Schuster et al. [146, section 7.2], with the difference that we used
a dropout of 0.2 between the model’s hidden layers and 64 epochs for training.

We implemented the classifier using Tensorflow 2 API and with the Keras [87]
frontend. We used 70% of the time series data for each label (video) for training and
the remaining for evaluating the classifer. The classifier achieves an overall precision
and recall of 81.8% each, and an overall accuracy of 96.4%.

Our experiment confirms prior work [4, 17, 18, 73, 133, 146, 153, 172, 180] and
shows that a network side-channel attack can identify videos in a collection with
good accuracy. While an attack in a production environment faces additional chal-
lenges like achieving co-location with the victim, prior work has shown that it is
easy to attain co-location [78, 79, 144]. Hence, cloud tenants that require strong con-
fidentiality have to consider that network side channels are a realistic threat.

4.2 Threat model

Figure 4.2 summarizes Pacer’s threat model. Pacer’s goal is to prevent network side-
channel leaks of a cloud tenant’s secrets to anyone able to rent other VMs in the
cloud. Prior work has shown that it is easy to attain co-location with a victim VM [78,
79, 144]. Accordingly, we assume a strong adversary that may co-locate its VMs with

4.2. Threat model 77

FIGURE 4.2: The adversary can (a) co-locate VMs with victim’s VM in
the cloud, (b) control clients of its own VMs, and (c) use cross-traffic
between any pair of these to infer the shape of the victim’s traffic at
shared network links.

the victim’s VM and indirectly infer the shape of the victim’s outbound traffic by ob-
serving contention with its own cross-traffic. In particular, the adversary may use
this method to infer the traffic shape of the victim at shared network elements in
the common server, rack, or datacenter. The adversary has access to all the services
available to IaaS guests, including the ability to time the transmission and reception
of its own network packets with high precision, which would enable it to perform
the indirect measurements as described in Section 4.1. The adversary controls net-
work clients, which may communicate freely with the adversary’s VMs. However,
the adversary cannot access the victim’s private network or impersonate/compro-
mise the victim’s clients. While not the goal of our work, Pacer’s design also protects
against powerful adversaries with the ability to directly observe the victim’s traffic
as well as delay, drop, and inject network packets.

The victim in the public IaaS cloud is a tenant executing arbitrary computations
in one or more guest VMs but not invoking other guest VMs or cloud backend ser-
vices. The victim’s goal is to protect its secrets, which can be reflected in parameters
of client requests (i.e., secret inputs, such as the name of a requested file), or in the
victim’s internal state (e.g., which request handlers are cache hot because they were
accessed recently). The victim serves a set of trusted clients that connect to its VMs
from outside the cloud via a secure Virtual Private Network (VPN) or from within
the cloud via a Virtual Cloud Network1. Tenants may require a second level of au-
thentication to separate clients’ privileges, but this is not relevant for Pacer’s security.

1In principle, Pacer can support multi-tier guests and also guests that provide an open service to
untrusted clients, but these extensions are beyond the scope of this thesis and not implemented in our
prototype. Section 4.9 discusses the extension to multi-tier guests.

78 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

We assume that the victim rents an entire server socket for exclusive use and
uses main memory within the NUMA domain associated with this socket to miti-
gate leaks to co-located tenants via shared memory buses, caches, and CPU micro-
architectural state (these side channels are not the focus of this work)2. We also
assume that the victim partitions its workload independent of secrets.

Our focus is on server-side security; protecting client privacy is a non-goal. More-
over, we assume that client traffic reveals no secrets through its shape (its length,
number of packets, or timing)3. This implies that the size and time of client requests
do not depend on any secrets or the actual completion times of previous responses.
A victim can design the content being served to meet this requirement, e.g., in the
case of a web server by in-lining embedded objects, and using Javascript to decor-
relate (in time) requests for embedded links and user requests that may depend on
previously served content.

Hiding the identity of the service requested [43, 67, 73] or the communication
protocol used [44, 179] is also not the focus of our work, although Pacer can be used
to address these goals too.

4.3 Key ideas

A principled approach to avoiding network side-channel leaks is to shape the net-
work traffic so that it cannot reveal secrets. If done naïvely, shaping can be very
costly in terms of bandwidth or latency when the payload traffic is bursty. Pacer
exploits the following key ideas to reconcile security and efficiency.

Per-guest dynamic shaping Pacer shapes each guest’s network traffic dynamically
according to the guest’s prevailing workload, thus enabling dynamic sharing of the
available network capacity among different guests for efficiency. This requires that
the presence and time of requests reveal no secrets, as assumed in our threat model.

Secret-independent shaping Instead of insisting on a uniform traffic shape for all
of a guest’s network traffic, Pacer allows the shape to vary, as long as the variations
don’t depend on secrets. For instance, if the type of content being requested from a
server (e.g., document vs. video) is not a secret, then a different traffic shape can be

2In principle, this assumption can be relaxed by using complementary work to mitigate side-
channel leaks through shared memory buses, caches, and CPU microarchitectural state [15, 169].

3This assumption can be avoided by shaping client traffic. In principle, Pacer can support this by
running a hypervisor on the client side, as discussed in Section 4.9.

4.4. Cloaked tunnel 79

used for the two. This additional degree of freedom helps minimize overhead for
variable network traffic while preventing leaks of secrets.

Gray-box profiling Dynamic traffic shaping requires an understanding of how a
guest’s public inputs affect its network traffic. This information can be obtained via
program analysis, but it is difficult to perform program analysis on arbitrary bina-
ries running in a VM. Black-box profiling can be performed on arbitrary guests, but
cannot reliably discover all dependencies and, therefore, is not secure. Pacer instead
relies on gray-box profiling, which requires no knowledge of a guest’s internals be-
yond an explicit traffic indicator from the guest. This indicator partitions the guest’s
possible network interactions independent of secrets and indicates the onset of a par-
ticular interaction. It is used by Pacer in two ways: (i) to profile the guest’s network
interactions and generate a transmit schedule for each partition, and (ii) to instanti-
ate a transmit schedule for a network interaction. As long as a guest computes the
indicator independent of secrets, the choice of indicator may affect performance but
not security. We discuss Pacer’s profiling in further detail in Section 4.6.

Paravirtualized support for traffic shaping Pacer provides paravirtualized hyper-
visor support that enables guests to implement a cloaked tunnel, while adding only
a modest amount of code to the hypervisor. A performance-isolated shaping com-
ponent in the hypervisor initiates transmissions based on a schedule. If no payload
is available at the time of a packet’s scheduled transmission, the shaping component
transmits a dummy packet instead. To the adversary, this dummy is indistinguish-
able from a payload packet as the traffic is encrypted. Pacer’s cloaked tunnel abstrac-
tion and paravirtualized design are discussed in Sections 4.4 and 4.5, respectively.

4.4 Cloaked tunnel

Pacer’s key abstraction is a cloaked tunnel, which ensures that the shape of network
traffic inside the tunnel is secret-independent, thus defending against adversaries
who can observe, directly or indirectly, traffic inside the tunnel. In this section, we
describe the tunnel and its security independent of a specific application setting,
implementation, or placement of tunnel entry and exits. In Section 4.5, we evolve
the design to work within the constraints of a realistic cloud environment.

80 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

4.4.1 Tunnel requirements

We begin with the requirements for a cloaked tunnel.

T1: Secret-independent traffic shape Packet transmissions must follow a schedule
that does not depend on secrets; actual transmission times must not be delayed by
potentially secret-dependent computations.

T2: Unobservable payload traffic The traffic shape must not reveal, directly or in-
directly, an application’s actual time and rate of payload generation and consump-
tion. This implies that flow control must not affect the traffic shape; that padded
content must elicit the same response (e.g., ACKs) from receivers as payload data;
and that packet encryption must encompass the padding. This in turn requires that
padding be added at or above the transport layer, while encryption be done below
the transport layer.

T3: Congestion control The tunnel must react to network congestion. It must pause
transmissions when the network is congested, and resume only when the congestion
is eliminated. Congestion control is needed only for network stability and fairness;
it does not reveal secrets, since the tunnel reacts to network conditions, which them-
selves depend only on already shaped and third-party traffic.

4.4.2 Architecture

Figure 4.3 shows the cloaked tunnel’s architecture, which addresses the require-
ments of the previous subsection. The tunnel protocol stack runs on both tunnel
endpoints. (Only one of the two symmetric endpoints is shown in the figure.) The
tunnel protocol stack consists of a shaping layer on top of a modified transport layer
(e.g., TCP) on top of the encryption layer4. These three layers rest on top of conven-
tional IP and link layers. Each tunnel is associated with a flow identified by a 5-tuple
of source and destination IP addresses and ports, and the transport protocol.5

The shaping layer initiates transmissions according to a schedule and pads pack-
ets to a uniform size. It interacts with applications via a set of shared, lock-free
queues. The layer takes application data from a per-flow outbound queue and trans-
mits it in the tunnel. It places incoming data from the tunnel into a per-flow inbound
queue. Finally, it receives traffic indicators and per-flow cryptographic keys (to be
used by the encryption layer) via a per-application command queue.

4The encryption could be done using IPSec protocol [86].
5We describe the tunnel in terms of TCP; however, another stack like QUIC [91] can also be used.

4.4. Cloaked tunnel 81

Shaping

Encryption

 TCP (modified)

NIC

Application

IP

Ethernet

Tunnel

 Profiler (ProfPace)

Schedule db

Performance
isolated

Constant time

Command						Flows	
…	

FIGURE 4.3: Cloaked tunnel (one endpoint)

A separate, user-level gray-box profiler (ProfPace) analyzes timestamps and traffic
indicators collected by the tunnel, and generates and updates transmit schedules in
the schedule database. ProfPace is described in Section 4.6. Below, we describe how
the tunnel enforces pre-computed transmit schedules.

Assumptions The tunnel design presented in this section relies on some idealized
assumptions, which will be relaxed in the practical design of Section 4.5. Specif-
ically, we assume here that the processing delays in the tunnel network stack are
not influenced by secrets directly or indirectly. This requires that: (i) the tunnel’s
layers—especially the shaping, transport, and encryption layers, which operate on
cleartext data—execute in constant time, i.e., they avoid data-dependent control flow
and memory access patterns in their data path implementation; and (ii) the execu-
tion of the tunnel network stack is performance-isolated from the application and any
other computation outside the stack.

Transmit schedules A transmit schedule is a finite series of times at which pack-
ets within a flow are transmitted. A schedule is typically associated with a type of
packet train, e.g., a file transfer or the response to a service request. There is at most

82 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

one active schedule on a flow at a time; successive schedules on the same flow are
non-overlapping in time.

Outbound data processing A timestamp is taken whenever data is queued by the
application; these timestamps and the recorded traffic indicators are shared with
the gray-box profiler. The shaping layer retrieves a chunk of available data from
the flow’s outbound queue whenever a transmission is due on a flow according to
the active schedule (if any) and TCP’s congestion window is open (see transport
layer below). The layer removes a number of bytes that is the minimum of (i) the
available bytes in the queue, (ii) the receiver’s flow control window (see transport
layer below), and (iii) M, the network’s maximal transfer unit (MTU) minus the size
of all headers in the stack. If fewer than M bytes (possibly zero) were retrieved from
the queue due to payload unavailability or flow control, the shaping layer pads the
chunk to M bytes. It adds a header indicating the number of padding bytes added.

Transport layer The transport layer operates as normal, except for two tunnel-
related modifications. First, when the congestion window closes, the transport layer
signals the shaping layer to suspend the flow’s transmit schedule until the conges-
tion window reopens. Schedule suspension ensures network stability and TCP-
friendliness, and does not leak information because it depends only on network
conditions, which are visible to the adversary anyway. Second, the flow control is
modified to make it unobservable to the adversary. The transport layer signals to the
shaping layer the size of the flow control window advertised by the receiver. This
window controls how much payload data is included in packets generated by the
shaping layer (see above). The transport layer transmits packets irrespective of the
flow control window, sending dummy packets while the window is closed, which
are discarded at the other end of the tunnel.

The transport layer passes outbound packets to the encryption layer, which adds
a message authentication code (MAC) keyed with the flow’s key to a header and
encrypts the packet with the flow’s key. Finally, encrypted packets are passed to
the IP layer, where they are processed as normal down the remaining stack and
transmitted by the NIC.

Inbound packet processing Packets arriving from the tunnel are timestamped; the
stamps are shared with the profiler. Packets pass through the layers in reverse order,
causing TCP to potentially send ACKs. The encryption layer decrypts and discards

4.4. Cloaked tunnel 83

packets with an incorrect MAC. The shaping layer strips padding and places the re-
maining payload bytes (if any) into the inbound queue shared with the application.

Schedule installation A transmit schedule must be installed on a flow before data
can be sent via the tunnel. A guest application does so indirectly by sending traf-
fic indicators. The application provides the flow’s 5-tuple f , a traffic indicator sid
(which maps to a transmit schedule), and a type. The shaping layer looks up the
schedule associated with sid in the schedule database and associates it with flow f .

There are two types of schedules: default and custom. A default schedule is in-
stalled when the flow is created. This schedule acts as a template, which is instanti-
ated automatically by the shaping layer whenever an incoming packet arrives that
indicates the start of a new network exchange (e.g., a GET request on a persistent
HTTP connection), identified by the TCP PSH flag. The schedule starts at a time
equal to the arrival time of the packet that causes the schedule’s instantiation.

A default schedule active on a flow can be extended by a custom schedule in re-
sponse to an application traffic indicator. For instance, a default schedule that allows
a TLS handshake might be extended with one that is appropriate for the response
to the first incoming network request. The new schedule can extend the currently
active schedule only if the new schedule’s prefix matches the prefix of the currently
active schedule that has already been played out. Because the new schedule is an-
chored at the same time as the profile it extends, the time of a schedule extension
is unobservable to the adversary. A traffic indicator that would require a custom
profile that does not match the played-out prefix of the active schedule is ignored.

4.4.3 Tunnel security

Next, we justify the cloaked tunnel’s security, summarized by property:

S0 The shape of traffic in the tunnel does not depend on secrets.

This property follows from the seven properties described next.

S1 Transmit schedules are chosen based on public information.

This property holds by the assumption about applications’ choice of schedules.

S2 The traffic in the tunnel is independent of the payload traffic.

This holds because packets are (i) padded and transmitted independently of the ap-
plication’s rate of payload generation and consumption; (ii) elicit a transport-layer

84 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

response from the receiver independently of payload traffic; and (iii) the packet con-
tents, including headers that reveal padding, are encrypted.

S3 All packet transmissions follow a schedule.

This holds because the tunnel initiates transmissions according to a schedule.

S4 Delays between scheduled and actual packet transmission times do not reflect secrets.

This follows from the fact that the tunnel stack, from the shaping layer down, is
performance-isolated from any secret-dependent computation and layers that oper-
ate on cleartext are constant-time.

S5 Transmit schedules are activated, paused, and re-activated at a secret-independent delay
from any observable event that causally precedes the pausing or (re-)activation.

This holds because (i) pausing, reactivation, and instantiation of default schedules
is performed within the performance-isolated tunnel stack; and (ii) by assumption,
custom schedule installations that take immediate effect are not causally preceded
by an observable event.

S6 Transmit schedules are suspended and resumed only in response to and according to the
network’s congestion state.

This follows from the tunnel’s transport layer congestion control mechanism.

S7 Modifications of active transmit schedules do not reveal secrets.

This holds because the time of schedule replacement is unobservable to the adver-
sary (matching prefix).

4.5 Pacer design

In the previous section, we described the conceptual design of a cloaked tunnel. In
this section, we describe Pacer, a concrete and practical cloaked tunnel design in the
context of a public IaaS cloud.

We begin with a discussion of constraints on the design space in the context of
a IaaS cloud. There are three constraints that need to be addressed while designing
the tunnel for the cloud tenants.

First, the tunnel must cover shared network links observable by an adversary.
In an IaaS cloud, co-located tenants typically share the network link attached to the

4.5. Pacer design 85

server and can therefore indirectly observe each others’ traffic. Therefore, the tunnel
entry must be in the IaaS server to ensure that the attached link lies inside the tunnel.

Second, shaping requires padding, which must be done at the transport layer to ensure
that it is unobservable (requirement T2 as defined in section 4.4.1).

Third, the conceptual tunnel design from the previous section requires that the
network stack is performance-isolated from secret-dependent computations and layers that
deal with cleartext are constant-time (as described in the assumptions in section 4.4.2).
However, performance-isolating the network stack within the IaaS guest is difficult,
since it shares resources with the application and the rest of the kernel, whose exe-
cution may be secret-dependent and can affect the execution of the network stack.
For instance, the allocation of packet buffers or preparation of packet headers may
be preempted due to another secret-dependent execution, or delayed while access-
ing the shared physical memory or cache which contained application secrets. This
suggests that shaping should be implemented in the IaaS hypervisor, where it can
be executed with dedicated resources and tightly controlled.

One way to meet all the requirements could be to place the entire network stack
into the hypervisor, performance-isolate it from guests, and implement it so that
it executes in constant time. This approach, however, has significant limitations.
First, ensuring performance-isolation for an entire network stack is technically chal-
lenging even in the hypervisor. Second, implementing the tunnel layers as constant
time is not trivial. Third, the approach defeats NIC virtualization, such as SR-IOV
(single root input/output virtualization), and instead requires that guests and their
network peers use the network stack provided by the IaaS platform. Finally, it adds
significant complexity to the hypervisor.

Pacer addresses the tension introduced by the above constraints using a paravir-
tualized approach. We describe Pacer’s architecture in detail next.

4.5.1 Pacer architecture

In Pacer, the hypervisor cooperates with the guest OS to implement the cloaked tun-
nel. The responsibilities are divided in such a way that (i) the hypervisor can ensure
tunnel security with only weak assumptions about a guest’s rate of progress, (ii) the
performance-isolated hypervisor component is small, and (iii) required changes to
the guest OS are modest. Effectively, we extend the IaaS hypervisor to provide a
small set of functions that allows guests to implement a cloaked tunnel, while guests
retain the flexibility to use custom network stacks on top of a virtualized NIC.

86 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

Shaping

Encryption

NIC

Application

IP

Ethernet

Profiler (ProfPace)

Schedule db

Command						Flows	
…	

 TCP (mod)

GPace

Xen

HyPace

Tunnel

Guest	

FIGURE 4.4: Pacer architecture

Figure 4.4 shows Pacer’s architecture. Unlike the strictly layered tunnel stack
from Section 4.4, Pacer factors out a small set of functions that inherently require
performance-isolation into the lowest layer, implemented in the IaaS hypervisor.
The HyPace component plugs into the Xen hypervisor [184] and provides these func-
tions. The GPace component, a Linux kernel module, plugs into the guest OS and
the OS of any network clients that interact with the guest. It implements the cloaked
tunnel in cooperation with HyPace.

HyPace instantiates transmit schedules, encrypts and adds MACs to packets,
and initiates their transmissions, while masking potentially secret-dependent de-
lays in its execution. It can generate padded (dummy) packets subject to congestion
control independently from the guest network stack, thereby avoiding the need to
performance-isolate the guest. GPace pads payload packets, and exposes each flow’s
congestion window, sequence number, and crypto key to HyPace. The guest has di-
rect access to a SR-IOV virtual NIC (vNIC) configured by the hypervisor, which it
uses to receive but not to transmit packets. As we show in section 4.5.2, Pacer’s secu-
rity properties remain equivalent to those of the conceptual cloaked tunnel design.

4.5. Pacer design 87

4.5.1.1 HyPace

Similar to the shaping layer in the conceptual tunnel design, HyPace receives traffic
indicators from applications (via GPace), instantiates template schedules in response
to incoming packets (signaled by GPace), and initiates transmissions. To ensure tun-
nel security despite potentially secret-dependent delays in the guest, however, Hy-
Pace performs additional functions and there are differences, which we discuss next.

HyPace implements padding, encryption, and congestion control in cooperation
with the guest. HyPace pauses a transmit schedule when a flow’s congestion win-
dow closes, and resumes the schedule when it reopens. When a transmission is due
on a flow and the congestion window is open, HyPace checks whether the guest
has queued a payload packet. If not, it generates a dummy packet with proper
padding, transport header, and encryption, using the flow’s next available TCP se-
quence number and the crypto key shared with the guest. Finally, HyPace initi-
ates the transmission of the payload or dummy packet and reduces the congestion
window accordingly.

Interface with guests HyPace shares a memory region pairwise with each guest.
This region contains a data structure for each active flow. The flow structure con-
tains the following information: the connection 5-tuple associated with the flow, a
sequence of transmit schedule objects, the current TCP sequence number seq and the
right edge of the congestion window cw, the flow’s encryption key, and a queue of
packets prepared for transmission by the guest. Each transmit schedule object con-
tains the traffic indicator sid and a starting timestamp. HyPace and the guest use
lock-free synchronization on data they share.

Packet transmission HyPace transmits packets according to the active schedule in
the packet’s flow. From a security standpoint, packets need not be transmitted at the
exact scheduled times; however, any deviation between scheduled and actual time
must not reveal secrets.

On general-purpose server hardware, it is challenging to initiate packet transmis-
sions such that their timing cannot be influenced by concurrent, secret-dependent
computations. Using hardware timers, events can be scheduled with cycle accuracy.
However, the activation time and execution time of a software event handler is influ-
enced by a myriad of factors. We call these factors internal timing leak factors, which

88 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

may include, among other factors, (i) frequency and voltage scaling; (ii) disabled in-
terrupts at the time of the scheduled event; (iii) non-maskable interrupts during the
handler execution; (iv) the CPU’s microarchitectural, cache, and write buffer state at
the time of the event; and (v) concurrent bus traffic. Many of these factors are in-
fluenced by the state of concurrent executions on the IaaS server and may therefore
carry a timing signal about secrets in those executions.

We disable hyperthreading, dynamic voltage and frequency scaling (DVFS), and
power management in the hosts, and we pin HyPace to run on a dedicated core,
where no VM is scheduled. These steps allow to mitigate the effects of (i)—(iii). We
implement a masking approach to mask the effects of all other factors on HyPace’s
execution. We next describe the masking approach.

Masking event handler execution time HyPace masks hardware state-dependent
delays to make sure they do not affect the actual time of transmissions. A general
approach is as follows. First, we determine empirically the distribution of delays
between the scheduled time of a transmission and the time when HyPace’s event
handler writes to the NIC’s doorbell register, which initiates the transmission. We
measure this distribution under diverse concurrent workloads to get a good estimate
of its true maximum. We relax this estimate further to account for the possibility
that we may not have observed the true maximum and call this resulting delay δxmit.
Second, for a transmission scheduled at time tn, we schedule a timer event at tn −
δxmit. Third, when the event handler is ready to write to the NIC doorbell register,
it spins in a tight loop reading the CPU’s clock cycle register until tn is reached and
then performs the write. By spinning until tn, HyPace masks the event handler’s
actual execution time, which could be affected by secrets.

Unfortunately, the measured distribution of event handler delays has a long tail.
We observed that the median and maximum delay can differ by three orders of mag-
nitude (tens of nanoseconds to tens of microseconds). This presents a problem: With
the simple masking approach, a single core could at most initiate one transmission
every δxmit seconds, making it infeasible to achieve the line rate of even a 10Gbps
link. Instead, we rely on batched transmissions.

Batched transmissions The solution is based on two insights. First, our extensive
empirical observations indicate that the instances in the tail of the event handler

4.5. Pacer design 89

delay distributions tend to occur very infrequently and never in short succession6.
As a result, the maximal delay for transmitting n packets in a single event handler
activation does not increase much with n. Therefore, we can amortize the overhead
of masking handler delays over n packets. Second, actual transmission times can be
delayed as long as the delay does not depend on secrets. Hence, it is safe to batch
transmissions.

We divide time into epochs, such that all packet transmissions from an IaaS server
scheduled in the same epoch, across all guests and flows, are transmitted at the
end of that epoch. An event handler is scheduled once per epoch. The handler
prepares all packets scheduled in the epoch, spins until the batch transmission time,
and then initiates the transmission with a single write to the NIC’s doorbell register.
We discuss the choice of epoch lengths and batch sizes in Section 4.8.3.

To understand the security of the batching mechanism, let us consider factors
that could delay the actual packet transmission time once the spinning core issues
the doorbell write. Buffers containing the packets were read before the spin, so the
state of caches plays no role. Similarly, the memory write buffer should be empty
after the spin. Interference from concurrent NIC DMA transfers reflects shaped traf-
fic and is therefore secret-independent. Similarly, any delays in the NIC itself due to
concurrent outbound or inbound traffic cannot depend on secrets. Thus, the actual
packet transmission times are independent of secrets.

However, the doorbell write itself could be delayed by traffic on the memory bus,
PCIe bus, or bus controller/switch. We next discuss the prevalence of such delays
and ways to eliminate them.

Hardware interference and NIC support A remaining source of delays are con-
current bus transactions caused by potentially secret-dependent computations. Em-
pirically, we have not been able to find clear evidence of such delays. Nonetheless,
such delays cannot be ruled out completely on general-purpose hardware.

A principled way to rule out such interference would require additional hard-
ware support. For instance, a scheduled packet transmission function provided by the
NIC would be sufficient. Software would queue packets for transmission with a
future transmission time t. At time t − δbus, the NIC DMAs packets into onboard
staging buffers in the NIC. Here, δbus would be chosen to be larger than the max-
imal possible delay due to bus contention. At time t, the NIC would initiate the

6Without the knowledge of Intel CPU internals, it is difficult to determine the exact cause of the tail
latencies, but their frequency suggests that they may be caused by system management interrupts.

90 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

transmission automatically. With such NIC support, HyPace would prepare pack-
ets for transmission as usual, but instead of spinning until tn it would immediately
queue packets with t = tn. Incidentally, NIC support for timed transmissions is also
relevant for traffic management, and a similar “transmit-on-timestamp” feature is
already available on modern smart NICs [122].

HyPace summary HyPace is a minimal component implemented in the hypervi-
sor, which is performance-isolated from the guest and enables guests to implement
a cloaked tunnel. HyPace’s careful design masks any potentially secret-dependent
delays in the transmission of a packet, obviating the need for a constant-time im-
plementation of any part of the tunnel’s network stack or a performance-isolated
guest network stack. At the same time, the batched transmission design amortizes
the high cost of masking and helps to sustain packet transmission througput close
to the NIC’s line rate.

4.5.1.2 GPace

GPace is a Linux kernel module that implements a cloaked tunnel jointly with Hy-
Pace. On the client-side of a network connection, GPace extends the kernel to termi-
nate the tunnel. GPace pads outgoing TCP segments to MTU size and removes the
padding on the receive path. It modifies Linux’s TCP implementation to share its
per-flow congestion window and sequence number with HyPace, and to notify Hy-
Pace of retransmissions so that HyPace can extend the active schedule by one trans-
mission. Unlike in the generic tunnel, where the shaping occurs above the transport
layer, this schedule extension is necessary to allow for retransmission; it does not
leak information because it depends only on network state.

Note that TCP’s flow control window is not advertised to HyPace, causing Hy-
Pace to send dummies if the receiver’s flow control window is closed, as required.
GPace timestamps outbound data arriving from applications and inbound packets
from the tunnel in the vNIC interrupt handler. All timestamps and recorded traffic
indicators are consumed by the profiler (Section 4.6).

GPace allows applications to install session keys and provide traffic indicators
on flows via IOCTL calls on network sockets. Recall that applications specify a flow,
a traffic indicator sid, and a type as arguments when indicating traffic. GPace passes
this information into the per-flow queue shared with HyPace, which uses the sid as
an index to look up the corresponding transmit schedule in the database.

4.5. Pacer design 91

Packet processing With GPace, the guest OS generates TCP segments as usual, but
pads them to the MTU size before passing them to the IP layer7. Instead of queu-
ing packets in the vNIC’s transmit queue, GPace queues them in per-flow transmit
queues shared with HyPace. The guest OS processes incoming packets as usual by
accepting interrupts and retrieving packets directly from its vNIC.

Schedule (re-)activation delays Unlike the conceptual tunnel design, Pacer pro-
cesses inbound network packets in the guest, which is not performance-isolated.
Therefore, care must be taken to ensure that the time of activation or re-activation
of a transmit schedule in response to an inbound packet does not reveal the guest
kernel’s execution time, which could depend on secrets. There are four events that
trigger schedule (re-)activation. Below we list the events and describe how we en-
sure schedule (re-)activations at defined, secret-independent delays from the corre-
sponding causally-preceding events. Let ε be HyPace’s epoch length and δrecv be the
guest OS’s empirical maximal inbound packet processing time.

(i) The arrival of the first packet of a request. GPace instantiates a default schedule
with a start time equal to the packet’s arrival time. To make sure the first
transmission occurs in time, we require that the initial response time of any
default schedule be larger than ε + δrecv.

(ii) The arrival of an ACK that opens the congestion window. GPace ensures that the
ACK does not enable a transmission that is scheduled within ε + δrecv of the
ACK’s arrival.

(iii) The arrival of an ACK that causes a retransmission. GPace ensures that the ACK
does not enable a transmission that is scheduled less that ε + δrecv from the
ACK’s arrival.

(iv) A timeout that causes a retransmission. GPace ensures that TCP’s timeout does
not enable a transmission that is scheduled within ε + δrecv of the timeout.
Here, we use δrecv as a conservative upper bound on the execution delay of
the timeout event handler.

These four rules make the guest’s actual processing time for incoming packets and
timeouts unobservable to the adversary.

7Note that ACKs are not padded as Pacer does not need to hide client traffic shape. However, ACKs
are paced to hide guest’s interference with their transmission

92 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

4.5.2 Pacer security

We now justify Pacer’s overall security. Pacer’s threat model rules out side channels
via shared CPU state, caches, and memory bandwidth, as well as shared cloud back-
end services. Therefore, in its attempt to learn the victim’s secrets, the adversary is
limited to (i) trying to connect to the victim as a client and observe the timing and
content of responses, or (ii) measuring the shape of the victim’s traffic by observing
packet sizes and timings on a shared network link.

Attack (i) is not possible because the adversary cannot elicit a response from the
victim. This is because Pacer relies on encryption and a MAC keyed with pre-shared
keys and GPace silently ignores incoming packets that cannot be authenticated.

Attack (ii) is unproductive because the victim’s incoming traffic shape is secret-
independent by assumption (Section 4.2), and its outgoing traffic is shaped to be
secret-independent as discussed in this section. Next, we justify that the victim’s
outgoing traffic shape is indeed secret-independent by design. In other words, we
justify that Pacer’s tunnel has property S0 of the cloaked tunnel from section 4.4.3.

S1 and S3 hold trivially, because the relevant behavior of Pacer is equivalent to
the conceptual tunnel’s. S2 holds because Pacer, like the conceptual tunnel, pads
packets above the transport layer, encrypts packets below the padding layer, and
makes flow control unobservable. S4 follows from GPace’s rules on the pausing and
(re-)activation of transmission schedules. S5 holds because HyPace’s batch trans-
mission mechanism masks the execution time of its transmission event handler. S6
holds because HyPace cooperates with GPace to pause and resume schedules in re-
sponse to the network’s congestion state. S7 holds because the schedule extension
happens in Pacer only in response to a packet loss, which is a public event.

4.6 Generating schedules

By default, Pacer can use the same transmit schedule for all of a guest’s network
traffic. This approach does not require any guest support and is perfectly secure. In
practice, however, tenants can significantly reduce bandwidth and latency overhead
by using different schedules for different partitions of their workload. As long as
those partitions are chosen by public information, no information is leaked. More-
over, by profiling guests’ network traffic, Pacer can generate transmit schedules
that closely reflect the guest’s network requirements and minimize inefficiencies in
packet padding and pacing.

4.6. Generating schedules 93

In this section, we discuss ProfPace, Pacer’s gray-box profiler that profiles guests
and generates transmit schedules automatically by analyzing the guest’s recorded
network interactions and the explicit traffic indicators provided by guest applica-
tion. For content-serving guest applications, we then analyze the application’s con-
tent corpus to suggest a clustering that maximizes bandwidth efficiency given the
application’s privacy needs.

4.6.1 Gray-box profiling

At each site in the guest’s application where a message is sent to the network, an
IOCTL call is invoked that provides a traffic indicator sid. The sid identifies segments
of the same equivalent class, e.g., a TCP handshake, a TLS handshake, or a response
to a request within a given workload partition. GPace logs the traffic indicators
along with the arrival times of incoming packets and the times at which the guest
OS queues packets for transmission, and shares the logs with ProfPace.

ProfPace bins the recorded network interaction segments by sid. The set of ob-
served segments in a bin are considered samples of the associated equivalence class
of network interactions. ProfPace characterizes the traffic shape for each class with
a set of three random variables: (i) the delay between the first incoming packet and
the first response packet di, (ii) the time between subsequent response packets ds,
and (iii) the number of response packets p. For each class, the profiler samples the
distribution of these random variables from the segments in the associated bin.

Finally, ProfPace generates a transmit schedule for sid based on the sampled dis-
tributions of the random variables. Specifically, it generates a schedule with the
100th percentile of the number of packets p, the 99th percentile of the initial delay
di, and the 90th percentile of the spacing among subsequent packets ds. We have
determined empirically that transmit schedules generated thus work well.

Recall that as long as applications choose sid values based on public informa-
tion, transmit schedules are relevant only for performance not security. An inad-
equate schedule could increase delays and waste network bandwidth due to extra
padding, but cannot leak secrets. For good performance, during profiling runs, the
guests should sample the space of workloads with different values of the public and
private information, as well as different guest load levels, so that the resulting pro-
files capture the space of network traffic shapes well.

Next, we consider how a content-serving guest can partition its workload to min-
imize overhead given its privacy needs.

94 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

4.6.2 Corpus analysis

Pacer minimizes overhead by allowing the shape of network traffic to reveal infor-
mation deemed public by the guest. Towards this end, a guest may partition its
workload so as to minimize padding overhead while ensuring that no secret infor-
mation is revealed. For instance, consider a guest that serves a corpus of objects with
a skewed size distribution. Using a single schedule for the entire corpus requires
padding every requested object to the largest object in the corpus, possibly incur-
ring a large overhead. Suppose the guest can partition the corpus based on public
information such that each partition contains objects of similar size; now each object
is padded to the largest object in its cluster, which may reduce overhead signifi-
cantly without revealing which object within a partition is being requested. Below
we briefly describe a clustering algorithm for videos and static HTML documents
that can minimize padding overhead subject to a guest’s privacy needs.

However, we note that determining what information can be considered public
and private in the context of a specific application and the corpus’s size and popu-
larity distributions may be challenging in general, and is beyond the scope of this
thesis. Our goal here is to highlight the large efficiency gains possible when clus-
tering content with skewed size distributions. We present specific overhead results
when clustering real videos and document corpuses in section 4.8.2.

Video clustering In many popular video streaming services, videos are streamed
as a sequence of segments of fixed duration, typically between 1s and 15s [38, 129].
The number of segments in a video, therefore, equals total duration of the video di-
vided by segment duration. Furthermore, the video streams are dynamically com-
pressed using a variable bitrate encoding scheme, such as MPEG-DASH [119] or
HLS [76], which leads to video segments compressed to different sizes, i.e., number
of bytes. Consequently, to hide a video within a cluster, we need to pad the number
of segments in the video as well as the sizes of the segments in the sequence.

Initially, we over-approximate the shape of each video vi by its maximal segment
size smaxi and its number of segments li. For each distinct video length l and each
distinct maximal segment size s in the entire dataset, we compute the set of videos
that are dominated by 〈l, s〉. A video vi is dominated by 〈l, s〉 if li ≤ l and smaxi ≤ s.

Let c be a desired minimum cluster size. Our algorithm works in rounds. In each
round, we select every 〈l, s〉 dominating at least c videos, and we choose as cluster

4.7. Implementation 95

the set of videos minimizing the average relative padding overhead per video, i.e.,

1
ci

ci

∑
j=1

li

∑
k=1

((
sk − skj

)
skj

)

where ci is the cardinality of the set of videos, li is the maximal length across all
videos in the set and sk is the maximal size of the k-th segment across all videos in
the set (i.e., max1≤j≤ci(skj)). The sequence of segment sizes 〈s1, s2, ..., sli〉 is the ceiling
of the cluster ci. Once a cluster is formed, videos in it are not taken into account
in later rounds. The algorithm terminates when all videos are clustered. If the last
cluster has less than c videos, it is merged with the one formed before it.

Document clustering We use a similar but simpler clustering algorithm to cluster
static HTML documents. In contrast to videos, HTML documents contain only one
data object. Therefore the clustering problem simplifies to one-dimensional clus-
tering based on the single size parameter of individual documents, and the largest
document in a cluster constitutes the cluster’s ceiling.

4.7 Implementation

We implemented HyPace for the Xen hypervisor in ~8,100 lines of C. We imported an
additional 4,458 lines of AESNI assembly code from OpenSSL 1.1.1b [128] to encrypt
packets in HyPace8.

We implemented GPace’s Linux kernel module in ~15,000 lines of C. GPace in-
tercepts the kernel network stack at a few points in the TCP layer and the NIC driver
layer, but does not modify the application’s interface with the network stack. GPace
modifies the semantics of TCP’s largely unused URG flag and urgent pointer to in-
dicate the number of padding bytes in a packet9.

At each site in an application’s code where a message is sent to the network, we
add 15 LoC to send a traffic indicator via IOCTL to the guest kernel. We identified
and modified these sites manually; automating the instrumentation is possible. No
other changes were required to guest applications.

Finally, we implemented ProfPace in 1,200 lines of C code which collects packet
logs from GPace, and 1,800 lines of Python code which computes traffic shapes.

8Alternatively, the guest could terminate an IPSec session and share the key with HyPace.
9Alternatively, a separate padding protocol could be implemented above TCP to indicate padding

in a separate header.

96 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

4.8 Evaluation

In this section, we present results of an empirical evaluation of Pacer’s prototype.

4.8.1 Experimental setup

All experiments were performed on Dell PowerEdge R730 server machines with
Intel Xeon E5-2667, 3.2 GHz, 16-core CPU (two sockets, 8 cores per socket), 512 GB
RAM, and a Broadcom BCM 57800 10Gbps Ethernet card. The NIC supports SR-IOV,
and was configured to export virtual NICs (vNICs). We disabled hyperthreading,
dynamic voltage and frequency scaling, and power management in the hosts.

We run the Xen hypervisor (version 4.10.0) on the hosts. The hypervisor is as-
signed one of the CPU sockets and 40GB of RAM. Up to two cores are configured
to execute the HyPace transmit event handler in parallel; guests’ flows are statically
partitioned among the HyPace cores. The guest runs an Ubuntu 16.04 LTS kernel
(version 4.9.5, x86-64) in a VM with 8 cores and 64 GB RAM, and has access to a
vNIC. The VCPUs of the guest VM were pinned one-to-one to cores on the second
socket of the host CPU, and we used Xen’s “Null” scheduler [185] for VM schedul-
ing. This is in line with our threat model, which assumes that guests rent dedicated
CPU sockets. Pacer requires less than 10MB of additional main memory in the Xen
hypervisor and less than 20MB of additional memory in each guest that uses Pacer.
The network clients run Ubuntu 16.04 LTS without a hypervisor.

We evaluated Pacer’s impact on client latencies and server throughput in the
context of two guest applications: (i) a video streaming service, and (ii) a web service
serving static documents. Both services use Apache HTTP Server 2.4.33 [5]. For
video streaming, we wrote a custom application in PHP, which works like a simple
file server serving video segments in response to client requests. The application
serves videos from an ext4 file system on a VM disk. The document service is based
on the Mediawiki server, version 1.27.1 [112]. Documents are stored in a database
hosted on MySQL 5.7.16 [120] within the VM. We used a modified wrk2 [181] client
to issue HTTPS GET requests for various pages to the document server.

With both services, we use real-world datasets, so that the videos or documents
have real size distributions. For videos, we use a corpus of videos that we down-
loaded from YouTube in March 2018. For the document service, we use two dif-
ferent real data sets: static HTML pages of the English Wiktionary and the En-
glish Wikipedia [57]. Note that even though Youtube videos, Wiktionary pages,
and Wikipedia pages are not sensitive and may not need protection with a system

4.8. Evaluation 97

like Pacer in practice, all that matters for our evaluation are the file sizes and size
distributions. The content of the documents is irrelevant as it is encrypted during
transmission anyway.

4.8.2 Spatial padding overhead

First, we measure the spatial padding overhead when clustering content as described
in Section 4.6. This overhead corresponds to the network bandwidth overhead for
an application due to Pacer’s traffic shaping.

We clustered three different datasets: (i) a set of videos that we downloaded from
YouTube in March 2018 (1218 videos, including music, sports, interviews, movie
trailers, news, and tv series, 240p bitrate, max duration 4.2 hours, median dura-
tion 7 minutes, max size 468.7MB, median size 6.2MB), (ii) a 2016 snapshot of the
English Wiktionary corpus (5,027,344 documents, max 521.9kB, median 4.7kB) [57],
and (iii) a 2008 snapshot of the English Wikipedia corpus (14,257,494 documents,
max 14.3MB, median 83.5kB) [57].

Figure 4.5 shows the reduction in the average and maximum padding overhead
with increasing number of clusters and decreasing minimum cluster size (i.e., the
minimum number of objects in each cluster). Compared to the two document datasets,
the overhead reduction is less for videos due to the smaller dataset with a nar-
rower range of video sizes, and due to the multi-dimensional clustering necessary
for videos. Nonetheless, there is a significant reduction in the average overhead with
increasing number of clusters in each dataset, and even clustering the corpuses into
just two clusters leads to at least two orders of magnitude reduction in the average
padding overhead.

4.8.3 Microbenchmarks

We empirically select a suitable HyPace epoch length ε, the maximum batch size
B (number of packets to be prepared by a HyPace handler) in each epoch, and the
parameters δxmit and δrecv from Section 4.5. To this end, we ran multiple 12-hour
experiments with varying network workloads. We requested 100KB-sized docu-
ments from the document server using concurrent clients. As background work-
load, we ran large matrix multiplications on the server’s dom0. The workloads were
configured to drive CPUs to near 100% utilization, and had a total working set of
~12GB of RAM.

98 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

1,
 a
ll

2,
 2

9

4,
 2

8

9,
 2

7

19
, 2

6

38
, 2

5

76
, 2

4

15
2,

 2
3

30
4,

 2
2

60
9,

 2
1

12
18

, 2
0

Number of clusters, Min cluster size

10-4
10-3
10-2
10-1
100
101
102
103
104
105

Re
la

tiv
e

ov
er

he
ad

Max overhead
Avg overhead

(A) Video dataset

1,
 a
ll

2,
 2

19

2,
 2

18

3,
 2

17

3,
 2

16

4,
 2

15

5,
 2

14

6,
 2

13

8,
 2

12

11
, 2

11

13
, 2

10

Number of clusters, Min cluster size

10-4
10-3
10-2
10-1
100
101
102
103
104
105

Re
la

tiv
e

ov
er

he
ad

Max overhead
Avg overhead

(B) English Wiktionary

1,
 a
ll

2,
 2

1
9

2,
 2

1
8

3,
 2

1
7

3,
 2

1
6

4,
 2

1
5

5,
 2

1
4

6,
 2

1
3

8,
 2

1
2

11
, 2

1
1

13
, 2

1
0

Number of clusters, Min cluster size

10-4
10-3
10-2
10-1
100
101
102
103
104
105

Re
la

tiv
e

ov
er

he
ad

Max overhead
Avg overhead

(C) English Wikipedia

FIGURE 4.5: Relative padding overhead vs number of clusters and
minimum cluster size (log-log scale) for (A) Youtube videos,
(B) English Wiktionary, and (C) English Wikipedia

4.8. Evaluation 99

To determine δxmit, ε and B, we measured the cost of preparing batches of pack-
ets for transmission in HyPace. Over many observations in the presence of the back-
ground load described above, we first determined the number of packets that can be
safely prepared with different epoch lengths with a single HyPace handler. Within
epochs of length 30µs, 50µs, 100µs and 120µs, the number of packets that could be
prepared was 5, 14, 33, and 42, respectively, which allows HyPace to achieve 22%,
28%, 41% and 42% of the NIC line rate with a single core. We configured ε to be
120µs for all HyPace handlers.

Based on these results, we use two parallel HyPace handlers running on two sep-
arate cores. In this configuration, we repeated our measurements and chose B = 38
packets and δxmit = 35µs for each handler. δrecv is independent of the number of Hy-
Pace threads, and its average and maximum values observed across all experiment
configurations were 3.9ms and 15.8ms, respectively. We conservatively configured
δrecv to 20ms.

4.8.4 Video streaming

Next, we measure the impact of Pacer’s traffic shaping on the latencies of clients
using the video streaming service.

Experimental setup We used the clustering configuration of 19 clusters with each
cluster containing at least 64 videos. The clustering yields an average padding over-
head of 4x for the dataset (Figure 4.5a).

We wrote a Python streaming client that simulates a MPEG-DASH player: when
a user requests a video, the client initially downloads a few segments (covering 5s
of video each) in succession to fill up a local buffer. After reaching 50% of the initial
buffer (rebuffering goal), the player starts “playing” the video by consuming the
segments from the buffer. The client downloads subsequent segments sequentially
whenever space is available in the buffer. Once the local buffer is filled (i.e., buffering
goal is reached), the client typically downloads one segment every 5s. In all our
experiments, we set the client’s buffering goal to 60s and the rebuffering goal to 30s.

With Pacer, the player does not request a segment until the transfer of the pre-
vious segment, including any padding, has finished; otherwise, the timing of the
client’s request would reveal the actual size of the previous segment. In our experi-
ments, we set the interval between segment requests at 1s.

100 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

1 { clusterid: 10,
2 bursts: 2, # n = 2
3 # n lines of { p, di, ds }
4 { 1, 0.5, 0.0 }, # b0
5 { si, 30.0, 0.5 }, # b1
6 }

FIGURE 4.6: Transmit schedule for ith video segment in a cluster

We measure the impact of Pacer’s traffic shaping on: (i) the initial delay until a
video starts playing, (ii) the frequency and duration of pauses (video skipping) ex-
perienced by the player, if any, and (iii) the download latency for individual video
segments. Towards this end, we use a number of concurrent clients that sequen-
tially request four randomly selected videos each from the video server, and play
each video for up to 5 minutes. The clients establish a new connection for each
video. We ran experiments with 10Gbps and 10Mbps bandwidth configurations on
the client side.

Transmit schedules Figure 4.6 shows a compact representation of the transmit
schedule for the ith segment of a video cluster generated by ProfPace. Each sched-
ule comprises two bursts. Lines 4 and 5 in the figure show the 3-tuple of 〈p, di, ds〉
(i.e., number of packets, initial delay, and packet spacing as described in section 4.6.1)
for the two bursts. Burst b0 consists of a single packet that will be transmitted 0.5ms
after receiving the client request. This burst is used to account for the single ACK
that the server may send in response to client requests prior to transmitting the ac-
tual response. Burst b1 consists of si packets, where the first packet will be trans-
mitted 30ms after receiving the client request, and the remaining packets will be
transmitted at a spacing of 0.5ms. si is the number of packets required to transmit
the ith ceiling segment in the given cluster. All profiles for the video corpus differ
only in the value of si.

Streaming for 10Gbps clients With the above schedules, there is no significant im-
pact on the user experience for streaming videos while using Pacer. The average and
maximum initial video startup delay (i.e., time until the rebuffering goal is reached
and the client starts playing a video) in the baseline are 0.016s and 0.13s respectively,

4.8. Evaluation 101

0 20 40 60 80 100 120 140
Segment size [KB]

100

101

102

103

104
M

ax
im

um
 la

te
nc

y
[m

s]

Baseline
Pacer

FIGURE 4.7: Download latency for a 10Mbps client for segments of
increasing sizes with and without Pacer’s shaping

which increase to 6.006s and 6.007s respectively with Pacer. The increase in the de-
lays is due to the interval between segment requests, which is conservatively set to
1s. Note that this gap is essential to ensure that segment request times are indepen-
dent of each other during traffic shaping.

As can be seen from the segment transmit schedules (Figure 4.6), the download
latency for each segment is in the order of hundreds of milliseconds. This is well
below the 5s deadline for segment download after the initial buffering. Thus, de-
spite Pacer’s traffic shaping we observe no video skipping in any of the experiments.
When serving 128 clients, the maximum CPU utilization on the server increases from
3.73% to 6.26% with Pacer.

Streaming for 10Mbps clients Pacer’s shaping also provides an opportunity to use
domain knowledge to optimize transmit schedules for better performance. Down-
loading the largest segment in our collection of 240p videos is ~325KB in size, which
is transmitted in ~250 MTU-sized TCP packets. Downloading this segment within
5s (the deadline when a video player can request only one segment at a time due to
full buffers) requires its packets to be sent at an interval of max 20ms. Conservatively
increasing the inter-packet spacing in the schedules to even 6ms still allows down-
loading all the segments within 5s. However, for 10Mbps clients, the paced schedule
avoids packet losses and reduces the segment download latency significantly. Fig-
ure 4.7 shows the download latency for a 10Mbps client for different segment sizes in

102 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

1 { clusterid: ‘‘small ’’,
2 bursts: 2,
3 { 1, 20.0, 0.00 }, # b0
4 { 20, 80.0, 0.50 }, # b1
5 }

A: Small cluster

1 { clusterid: ‘‘large ’’,
2 bursts: 5,
3 { 1, 20.0, 0.00 }, # b0
4 { 128, 100.0, 0.35 }, # b1
5 { 40, 160.0, 0.20 }, # b2
6 { 225, 180.0, 0.20 }, # b3
7 { 7, 2200.0 , 0.10 }, # b4
8 }

B: Large cluster

FIGURE 4.8: Transmit schedules for the two clusters used in the
document server: (A) small cluster, (B) large cluster

the baseline, and after applying Pacer’s shaping with 6ms inter-packet spacing. Note
that this schedule optimization does not affect security; it only takes advantage of
Pacer to reduce network contention, which is a known benefit of traffic shaping [6].

4.8.5 Document server

Next, we measured Pacer’s impact on the throughput of the document server and
the response latency of the clients when serving the English Wiktionary corpus.

Experimental setup We used a coarse-grained clustering of the corpus with one
cluster of 5,010,856 files up to 12KB in size and another with the remaining 16,488
files, which yields an average padding overhead of 150%. Clients request different
Wiktionary pages concurrently and synchronously for a period of 120s. Prior to
the measurement, we ran the workload for 10s to warm up the caches. We ran a
workload trace where clients request a total of 1,000 files randomly chosen from both
clusters. For comparison, we stressed the server with requests only to the largest file
in the corpus (521.9KB).

4.8. Evaluation 103

Transmit schedules A compact representation of the transmit schedules for the
two clusters is shown in Figure 4.8. The schedule for the small cluster is similar to
that for video segments: responses are sent in two bursts, with the first burst con-
sisting of a single packet sent 20ms after the client request, and the second burst
consisting of 20 packets sent with a spacing of 0.5ms starting at 80ms after the client
request. Responses for the large cluster are sent in 5 bursts. The schedule for the
large cluster is hand-optimized to reflect the bursty transmission of large files during
the slow-start phase of TCP flows. Current ProfPace prototype does not capture the
variance in the inter-packet spacing due to closing of congestion window (e.g., dur-
ing the slow-start phase of TCP flows), and generates transmit schedules with a ds

that is used uniformly for all packets sent on a given schedule. Such a schedule
leads to rapid transmission of dummy packets during slow-start phase, and causes
transmission of large files to fail.

Server throughput and client latency Figures 4.9a and 4.9b show the impact of
Pacer’s traffic shaping on server’s throughput and clients’ average response laten-
cies for the request trace workload, respectively. Figures 4.9c and 4.9d show similar
results for the workload comprising only the largest file. The errors bars in the plots
on the right side show the standard deviations of the average latencies.

With Pacer (blue), once the server is at capacity, it fails to serve additional re-
quests and clients time out. Unlike the baseline, client latencies remain constant un-
til the maximal throughput with Pacer (Figures 4.9b and 4.9d), because the latency is
determined by the initial response delay in the transmission schedule. The latencies
are higher with Pacer than in the baseline because the profiler generates conser-
vative schedules based on all traffic samples observed during profiling, including
samples captured when the application is saturated. Nevertheless, the latencies re-
main within hundreds of milliseconds, and could be optimized substantially using
different schedules for different load conditions.

Pacer incurs a 6.8% and 30% overhead on peak throughput for the trace workload
and the large file, respectively (Figures 4.9a and 4.9c). These values reflect Pacer’s
total overhead because they compare to a saturated baseline server. With the large
file, the baseline operates at over 40% of the line rate, and we believe that Pacer’s
performance in this challenging experiment is limited by the accuracy of transmit
schedules, which can be improved substantially.

104 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

0 30 60 90 120 150 180 210 240 270

clients

0

200

400

600

800

1000

1200

1400

1600

1800

T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s/
s)

Baseline

Pacer

(A) Throughput for trace workload

0 30 60 90 120 150 180 210 240 270

clients

0

100

101

102

103

La
te

n
cy

 (
m

s)

Baseline Pacer

(B) Client latencies for trace workload

0 30 60 90 120 150 180 210 240 270

clients

0

200

400

600

800

1000

1200

1400

1600

1800

T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s/
s)

Baseline

Pacer

(C) Throughput for largest file

0 30 60 90 120 150 180 210 240 270

clients

0

100

101

102

103

La
te

n
cy

 (
m

s)

Baseline Pacer

(D) Client latencies for largest file

FIGURE 4.9: Document server throughput and client latencies

4.9 Extensions

In this section, we discuss extensions to Pacer’s design to provide network side-
channel mitigation for additional classes of applications. We also discuss how Pacer’s
profiling can be enhanced to automatically identify parameters for efficient work-
load partitioning. Exploring the design and evaluation of these extensions is left to
future work.

4.9.1 Interactive client requests

Pacer currently shapes only the server-side traffic of an application, and assumes
that the shape of client traffic reveals no secrets. This is sufficient for services with
limited client-server interaction such as file downloading and video streaming. How-
ever, in more interactive applications, a client’s request may depend on previous
responses from the server. In such cases, the client request and even the shape of
the client traffic may reveal secrets and must, therefore, be paced and padded. To
handle such applications, Pacer’s traffic-shaping support can be extended to clients

4.9. Extensions 105

by modifying the client browser or OS, or by running a Pacer-enabled hypervisor on
the client. A transmit schedule for the application would then cover an entire interac-
tion sequence between the client and server, from the first request of the client to the
last response of the server.

4.9.2 Multi-tier services

Our current prototype of Pacer supports single-tier services, where a single server
processes client requests without relying on other backend servers. Multi-tier ser-
vices can be supported by running Pacer on all servers (frontend and backend) and
extending transmission schedules to cover the entire communication graph of a re-
quest. However, in a multi-tier service, it may be challenging to determine the best-
fitting communication graph from just the initial request. So, we anticipate that, as
in our current single-tier design, we would start processing a request using a default
profile, which will be replaced with a custom profile after the structure of the re-
maining communication becomes clear. This is secure as long as the already played
part of the default profile at the point of the replacement is a prefix of the new profile.

4.9.3 Dynamic content

In applications like VoIP, the amount of traffic in each direction during a session
depends on user actions. In these cases, the structure of the transmission schedule
will be application-specific, but we believe that the structure can be determined for
many applications. For instance, in VoIP sessions, the duration of VoIP calls can be
bucketized, and for any given duration, traffic can be transmitted for that duration
at a uniform rate. The granularity of buckets would determine the trade-off between
security and transmission-volume overhead, while the rate of transmission would
determine the trade-off between call quality and bandwidth overhead.

4.9.4 Private VPN services

Network side-channel disclosures are relevant even for services hosted within an
organization’s premises and communicating via a secure VPN over the public Inter-
net. Even though an adversary may not achieve co-location with the organization’s
service inside its premises, a powerful adversary could still observe the VPN traffic
directly at network elements in the public Internet. However, because the adversary
is outside the organization premises, Pacer’s cloaked tunnel design can be simplified

106 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

significantly to provide network side-channel mitigation for VPN services. Specif-
ically, the tunnel endpoints can be integrated in a separate middlebox, such as a
gateway node of the organization’s network. This would allow building a cloaked
tunnel without modifying the OS on the application servers, and would provide
mitigation for multiple applications with minimal effort from the application devel-
opers and system administrators.

4.9.5 Automated discovery of workload partitions

Currently, application developers need to manually identify public parameters that
can be used to partition workloads to reduce shaping overheads. For applications
with diverse workload characteristics, partitioning the workloads along multiple
parameters may yield more efficiency gains. ProfPace can be enhanced to explore
the tradeoff between privacy and overheads by generating multiple workload parti-
tions. It can also provide hints to the application developer on parameters that may
be most relevant for reducing overheads while retaining privacy guarantees for the
application data.

4.9.6 Schedule adaptation

Although the choice of transmit schedules is not relevant for security, it is essen-
tial to have efficient schedules that do not incur significant bandwidth and latency
overheads. The efficiency of the schedules depends on the coverage of public and
private inputs during the profiling stage. If the input coverage is low, or if the appli-
cation data and workload evolve over time, the schedules may become inefficient.
ProfPace can be run periodically to re-compute schedules based on recent workload
conditions. The schedule recomputation period must be sufficiently large to ensure
that the recomputation does not reveal secrets from recent requests.

4.10 Related work

In this section, we compare Pacer to existing mitigation techniques, and also discuss
technically related work with other threat models or goals.

4.10. Related work 107

4.10.1 Mitigating network side channels in clouds

Contention on NICs in a cloud can be mitigated by time-division multiple access
(TDMA) scheduling in a hypervisor [84] as this eliminates the adversary’s ability to
observe a co-located victim’s traffic. However, this approach is inherently inefficient
when the payload traffic is bursty. Statistical multiplexing, which only caps the total
amount of data transmitted by a VM in an epoch, is fundamentally insecure as the
bandwidth available to a flow depends on the bandwidth used by other flows [62].

Another defense is to restrict the adversary’s ability to measure time precisely
and at fine granularity [105, 110, 170]. However, this approach is akin to relying on
noise in adversary’s observations, and cannot completely eliminate the possibility
of a side-channel leak. Moreover, this approach forces coarsening the time source
for all tenants, which may break the functionality of tenants relying on fine-grained
timing measurements.

StopWatch [98] and Deterland [182] replace a cloud VM’s access to fine-grained
“real time” with a “virtual time” based only on the VM’s (deterministic) execution.
To prevent a VM from accessing “real time” using an external colluder, StopWatch
replicates each tenant’s VM 3×, co-locates each replica with different guests, and
delivers an external interrupt at a virtual time that is the median of the 3 virtual
times at which interrupt is received at each replica. This prevents a guest from con-
sistently observing I/O interference with any specific co-located tenant. Deterland,
in contrast, simply batches the interrupts and delivers them at boundaries of coarse-
grained time intervals.

Both StopWatch and Deterland only reduce the granularity of time that an ad-
versary can observe, but cannot completely mitigate timing channels. Moreover,
both systems do not consider network side channels based on packet sizes. Pacer
does not prevent an adversary from performing fine-grained timing measurements
of victim’s traffic, and instead shapes the victim’s traffic to eliminate any observable
secret-dependent signal in its shape. Additionally, Pacer requires far fewer cloud re-
sources (compared to StopWatch), and fewer modifications to the cloud hypervisor
and guests (compared to Deterland).

Bilal et al. [12] generate multicast traffic to shape the pattern of queries to different
backend nodes in multi-tier stream-processing applications in a cloud, but they do
not consider leaks due to packet sizes and timing, which is what Pacer addresses.

108 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

4.10.2 Traffic-shaping systems to mitigate network side channels

Dependence of packet size on secrets can be eliminated by padding all packets to
a fixed length [73, 180]. This standard technique is also used by Pacer. Making
packet timing independent of secrets is substantially harder. A straw man is to send
packets continuously at a fixed rate independent of the actual workload, inserting
dummy packets when no actual packets exist [148, 153]. However, this either wastes
bandwidth or incurs high latencies when the workload is bursty.

BuFLO [43] reduces this overhead by shaping response traffic to evenly-spaced
bursts of a fixed number of packets for a certain minimum amount of time after a re-
quest starts. However, this leaks the size of responses that take longer than the min-
imum time. Tamaraw [21], CS-BuFLO [19], and DynaFlow [107] pad each response
to some factor of the original size, e.g., the nearest power of 2. They offer no control
over how many objects end up with the same traffic shape. In fact, a traffic shape
may correspond to a single sensitive object, which would be afforded no protection
at all. In contrast to these systems, Pacer allows precise control over cluster size.

Additionally, CS-BuFLO and DynaFlow adapt traffic shapes based on the ap-
plication’s actual transmission rate. However, this rate may depend on application
secrets. Thus, the choice of the traffic shape in these systems may leak secrets. In
contrast, Pacer allows traffic shape adaptation based only on public inputs, so the
traffic shape is secret-independent.

Walkie-Talkie [175], Supersequence [176], and Glove [123] cluster responses, and
generate a traffic shape for the cluster that envelopes each response in the cluster.
However, the traffic is shaped only for packet size and inter-packet spacing but not
for the server response latency. This allows leaks via the application’s delay up to
the first response packet. Traffic morphing [178] makes sensitive responses look like
non-sensitive responses, but only shapes packet sizes and ignores packet timing.
In contrast, Pacer shapes packet size, inter-packet spacing, and the server response
latency, thus eliminating all leaks by design.

Additionally, the systems described above do not defend against interference
between the shaping component (enforcement) and the rest of the application stack,
which is required in our context (Section 4.5). Hence, they would allow for potential
leaks if integrated directly within the cloud host. Pacer, on the other hand, is care-
fully designed and implemented to mask all secret-dependent delays in its pacing
component (HyPace), as described in section 4.5.1.1.

Zhang et al. [193] mitigate leaks in video streaming traffic on the client side. A

4.10. Related work 109

proxy in the client browser adds differentially-private noise in the sequence of sizes
and timing of the video bursts requested. However, the proxy does not guarantee
differential privacy of the sequence of packet sizes and timing, and does not hide
video lengths. Pacer clusters videos by sequence of segment sizes, and shapes sizes
and timing of packets, segments, and full videos in each cluster deterministically.

4.10.3 Predictive mitigation

Predictive mitigation [8, 192] mitigates network timing side channels and covert
channels, but in a threat model fundamentally different from Pacer’s. In Pacer, the
threat is from a co-located tenant or a network adversary that cannot compromise (or
authenticate as) legitimate clients of the victim. In contrast, in predictive mitigation
the threat is from legitimate (or authenticated) clients of the victim who may have
been compromised. In this setting, the adversary can always distinguish real packets
from dummy packets, so predictive mitigation does not rely on dummy packets and
uses a fundamentally different shaping strategy: at each scheduled transmission,
the enforcement mechanism transmits a packet only if the application has actually
provided one. Otherwise, nothing is transmitted and an information leak (up to 1
bit) is incurred due to the absence of a packet on the wire. After any such leak, the
schedule is adjusted using a prediction algorithm (based only on public inputs) to
reduce the chances of a leak in the future. In contrast, owing to its different threat
model, Pacer is able to send a dummy packet when the application does not provide
a real packet before a scheduled transmission. This prevents leaks completely.

Nonetheless, Pacer and predictive mitigation share a key technical idea: Both
partition application workloads based on public inputs and compute a traffic shape
for each partition ahead of time. The difference is that a bad shape for a partition can
leak information in predictive mitigation, but it only affects performance in Pacer.

Finally, the prototype implementation of predictive mitigation does not prevent
or mask interference between the pacing logic and the application, which may result
in timing leaks from the application to the paced traffic. Hence, that implementation
cannot be used in our IaaS context without significant changes (Section 4.5).

4.10.4 Related work with other threat models

Metadata privacy Herd [94], Vuvuzela [168], Karaoke [92], and Yodel [93] pro-
vide metadata privacy: they prevent information about who is communicating with

110 Chapter 4. Pacer: Network Side-Channel Mitigation in the cloud

whom from leaking via network side channels. However, these systems do not ad-
dress leaks via metadata such as the lengths of application messages or calls.

Pacer’s goal is to prevent sensitive data from leaking via network side chan-
nels, which is fundamentally different from that of the above systems. To address
its goal, in addition to shaping the sizes and timing of individual packets, Pacer
shapes the lengths of application messages. Further, although metadata-privacy sys-
tems and Pacer share some underlying techniques (e.g., use of fixed size packets and
dummy packets to shape traffic), Pacer additionally masks interference between the
application and HyPace, thus preventing leak of sensitive data via timing channels.

Censorship circumvention systems Systems like Format-Transforming Encryp-
tion (FTE) [44], SkypeMorph [118] and ScrambleSuit [177] use a tunnel abstraction
similar to Pacer’s conceptual design (Section 4.4) to modify payload traffic to bypass
a traffic censor’s filters. This goal is different from Pacer’s goal of decorrelating ob-
servable traffic from secrets, and the tunnel’s design depends on the assumptions
about the censor’s filters. For example, FTE [44] circumvents filters that use only
deep-packet inspection, but not packet size or timing information. Hence, FTE does
not shape traffic and offers no protection against threats that Pacer defends against.

ScrambleSuit [177] seeks to bypass censors that may inspect packet sizes and
timing. It shapes packet size within the tunnel to a distribution picked ahead of
time, independent of any secrets. However, it only weakly obfuscates packet timing
by adding a bounded random delay to every payload packet. This does not hide
long (secret-dependent) inter-packet gaps and may leak information, unlike Pacer.

SkypeMorph [118] has goals similar to ScrambleSuit. It extends traffic morph-
ing [178] to sample both the inter-packet gap and the packet size from a fixed dis-
tribution, which mimics the distribution of some target protocol that the censor is
assumed to allow. Dummy traffic is sent when the application does not produce
sufficient traffic in time. While this approach could securely mitigate network side-
channel leaks as well, it transmits traffic continuously at the average transmission rate
of the target protocol. This either wastes bandwidth or causes significant latency
overhead when the payload traffic is bursty. In contrast, Pacer allows adapting the
transmission rate for every request based on public parameters of the request, thus
limiting overheads on both bandwidth and latency.

Finally, unlike Pacer, the implementations of SkypeMorph and ScrambleSuit do
not mask interference between the application and the pacing component. Hence,
both implementations could suffer from leaks when integrated with the cloud server.

4.10. Related work 111

Oblivious computing Oblivious computing systems [34, 47, 106] generally pre-
vent accessed memory addresses or accessed database keys from depending on se-
crets. Pacer addresses the orthogonal problem of making packet size and timing
independent of secrets. As such, the techniques used in the two lines of work are
completely different—oblivious computing generally relies on ORAM techniques,
while Pacer relies on traffic shaping. However, Fletcher et al. [56] address timing
leaks in ORAM accesses by pacing ORAM accesses. While this is superficially sim-
ilar to Pacer’s pacing of general network traffic, the pacing mechanism used by
Fletcher et al. changes the pacing rate periodically based on the past actual request
rate of the program, which may be secret-dependent. In contrast to Pacer’s design,
this leaks information.

4.10.5 Related work with non-security goals

Some work has focused on the performance effects, but not the security consequences
of contention on network resources from co-located tenants. Pu et al. [142] mea-
sure the performance consequences of many side-channel interactions between co-
located tenants. In particular, they conclude that co-locating I/O-intensive (specifi-
cally, network-intensive) tenants together degrades performance due to contention
on switches and network events. Ongaro et al. [125] describe scheduler designs to
minimize such problems. Chiang et al. [27] show how such interferences can be ex-
ploited adversarially by deliberately timing I/O at fine-granularity (in a black-box
manner) to contend with a co-located victim’s I/O and cause performance problems
for it. To defend against such attacks, Richter et al. [143] propose to rate-limit the
traffic from each VM by modifying the NIC’s firmware. Pacer’s traffic shaping can
be similarly implemented in the NIC.

Silo [83] aims to improve remote access latency in a data center but also imple-
ments a traffic pacer in the hypervisor and uses dummy packets like Pacer. How-
ever, the purpose of Silo’s pacer is to prevent flooding of the network (which can
increase latencies). For this, Silo injects dummy packets into the NIC’s queue; these
packets are dropped at the next hop. In contrast, Pacer does not rate-limit NICs.
Instead, it shapes the traffic just before it reaches the NIC.

MITTS [196] “shapes” memory traffic on CPU cores for performance and fair-
ness, whereas Pacer shapes network traffic for security, so the goals and approaches
are again very different.

113

Chapter 5

Conclusion

Contemporary online services collect and process diverse sensitive personal infor-
mation. An important concern for the online services is to prevent unintended
disclosure and misuse of sensitive data. This thesis outlined several challenges in-
volved in building practical solutions against data disclosures and misuse. The chal-
lenges arise from the diversity of data policies, complexity of application systems,
and the numerous threats of data disclosures and misuse.

This thesis presents systems that ensure compliance by design with data privacy
and usage policies in online services. A compliance system specifies a threat model
describing the adversary capabilities and channels over which data can be leaked,
provides a framework to specify the application policies, and provides a mechanism
to enforce the policies and prevent data leaks subject to the threat model. We present
two compliance systems—Qapla and Pacer—that prevent data disclosures and mis-
use due to application bugs and network side channels respectively. We summarize
the key ideas and contributions of the two systems below.

5.1 Summary of results

Qapla (Chapter 3) prevents direct disclosures in database-backed applications aris-
ing due to application bugs, specifically due to queries that violate data policies.
These disclosures arise because the access control support in existing DBMSs is in-
sufficient to support complex application policies; as a result, applications attempt
to enforce the policies within their own code, which is an error-prone approach.

Qapla enables specification and enforcement of a rich class of data policies (in-
cluding data linking and aggregation policies) in a DBMS-agnostic and application-
transparent manner. It removes the often large and rapidly-evolving application

114 Chapter 5. Conclusion

from the codebase trusted for compliance, and simplifies the design of both legacy
and new applications by obviating the need for pervasive policy-enforcement code.

Pacer (Chapter 4) prevents network side-channel disclosures in cloud-hosted ser-
vices, specifically leaks of data from a tenant to an adversary co-located on the same
server or rack within the datacenter. Such disclosures are an important concern ow-
ing to the widespread use of public cloud systems; however, they haven’t received
much attention.

Pacer essentially enforces a single policy for a tenant that disallows any prin-
cipal unauthorized to access sensitive data from even inferring the data indirectly,
and specifically prevents data leaks through the network traffic shape (packet sizes,
number, and timing). Pacer shapes the victim’s traffic to make the traffic shape in-
dependent of the victim’s secrets, and allows variations in the shapes based only on
non-secrets, thus reconciling security with efficiency. Pacer’s gray-box profiler com-
putes the traffic shapes with minimal support from the tenant application. Pacer’s
novel abstraction of a cloaked tunnel eliminates network side-channel leaks by de-
sign, while its tunnel implementation integrated with a cloud server overcomes
practical challenges regarding performance-isolation of the tunnel from the secret-
dependent computations and handling network congestion conditions. Thus, Pacer
demonstrates the design of a secure, efficient, and practical system that mitigates
network side-channel leaks in cloud tenants by design and with minimal support
from the tenant application.

5.2 Future work

Online services continue to evolve in response to new hardware, programming para-
digms, and applications. Ensuring compliance with data policies in such a dynamic
environment remains a challenging open problem. Below we discuss some chal-
lenges and opportunities for designing efficient compliance solutions specifically in
the context of future cloud datacenter applications.

5.2.1 Compliance for next-generation cloud applications

cloud applications are evolving under two trends. First, the monolithic applications
are being refactored into smaller microservices that communicate with each other to
perform a single task (e.g., processing a single client request). Second, hardware

5.2. Future work 115

vendors, such as Intel, are pushing towards disaggregated hardware that replaces tra-
ditional CPUs with separate compute, memory, and storage servers, which will re-
sult in further refactoring of datacenter applications. These changes present several
interesting research challenges for ensuring end-to-end compliance in an application
in terms of both specifying and enforcing data policies.

Applications may comprise several microservices from potentially untrusted ven-
dors. To ensure end-to-end compliance in such applications, a system would need
to enforce policies not only on what data individual microservices can access, but
also on what data they send to or receive from other microservices. Tracking data
flows at runtime would incur significant performance overheads due to the need
to track several fine-grained data flows within individual microservices as well as
across the different microservices of an application. Fortunately, the simpler de-
sign of individual microservices could make them more amenable to auditing and
static analysis techniques, which can be used to reduce the runtime checks within
the microservices. Thus, a hybrid solution combining static analyses and runtime
data-flow tracking may provide an efficient end-to-end policy compliance solution
for future cloud applications.

5.2.2 Efficient mitigation of side channels

Microservices and hardware disaggregation fundamentally also increase fine-grained
sharing of physical resources among microservices of multiple tenants, making the
threat of side channels even more pertinent, as an adversary can now observe in-
dividual microservices and infer information about an application’s intermediate
states that was previously hidden. Pacer’s conceptual idea of traffic shaping can be
extended to shape traffic along the entire communication graph of microservices of
an application. However, Pacer’s software implementation of traffic shaping is un-
likely to scale to the high network loads resulting from the disaggregated software
and hardware architecture. Specialized hardware, such as programmable NICs and
switches could help to implement a system to prevent network side-channel disclo-
sures securely and efficiently.

To conclude, as providers continue to build newer powerful, efficient, and scalable
services, compliance systems need to evolve to provide principled solutions that
prevent unintended data disclosures and misuse.

117

Bibliography

[1] 80% of robbers check Twitter, Facebook, Google Street View. https://www.zdnet.
com/article/infographic- 80- of- robbers- check- twitter- facebook-

google-street-view/. 2011.

[2] A Special Price Just for You. https://www.forbes.com/sites/neilhowe/2017/
11/17/a-special-price-just-for-you/. 2017.

[3] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. “Predicting Secret Keys via Branch
Prediction”. In: Cryptographers’ Track at the RSA Conference. 2007.

[4] Y. Agarwal, V. Murale, J. Hennessey, K. Hogan, and M. Varia. “Moving in
Next Door: Network Flooding as a Side Channel in Cloud Environments”.
In: International Conference on Cryptology and Network Security (CANS). 2016.

[5] Apache HTTP Server. http://httpd.apache.org/. Accessed 31 Aug 2020.

[6] M. Aron and P. Druschel. TCP: Improving Startup Dynamics by Adaptive Timers
and Congestion Control. Tech. rep. 1998.

[7] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise Pri-
vacy Authorization Language (EPAL 1.2). http://www.w3.org/Submission/
2003/SUBM-EPAL-20031110. 2003.

[8] A. Askarov, D. Zhang, and A. C. Myers. “Predictive Black-Box Mitigation
of Timing Channels”. In: ACM Conference on Computer and Communications
Security (CCS). 2010.

[9] M. Y. Becker, C. Fournet, and A. D. Gordon. “SecPAL: Design and Semantics
of a Decentralized Authorization Language”. In: Journal of Computer Security
(JCS) 18.4 (2010).

[10] G. M. Bender, L. Kot, J. Gehrke, and C. Koch. “Fine-grained disclosure control
for app ecosystems”. In: ACM International Conference on Management of Data
(SIGMOD). 2013.

[11] D. J. Bernstein. Cache-timing attacks on AES. 2005.

https://www.zdnet.com/article/infographic-80-of-robbers-check-twitter-facebook-google-street-view/
https://www.zdnet.com/article/infographic-80-of-robbers-check-twitter-facebook-google-street-view/
https://www.zdnet.com/article/infographic-80-of-robbers-check-twitter-facebook-google-street-view/
https://www.forbes.com/sites/neilhowe/2017/11/17/a-special-price-just-for-you/
https://www.forbes.com/sites/neilhowe/2017/11/17/a-special-price-just-for-you/
http://httpd.apache.org/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110

118 Bibliography

[12] M. Bilal, H. Alsibyani, and M. Canini. “Mitigating Network Side Channel
Leakage for Stream Processing Systems in Trusted Execution Environments”.
In: ACM International Conference on Distributed and Event-based Systems (DEBS).
2018.

[13] J. Biskup. “History-Dependent Inference Control of Queries by Dynamic Pol-
icy Adaption”. In: Annual IFIP WG 11.3 Conference Data and Applications Secu-
rity and Privacy (DBSec). 2011.

[14] A. Blankstein and M. J. Freedman. “Automating Isolation and Least Privilege
in Web Services”. In: IEEE Symposium on Security and Privacy (S&P). 2014.

[15] B. A. Braun, S. Jana, and D. Boneh. Robust and Efficient Elimination of Cache and
Timing Side Channels. http://arxiv.org/abs/1506.00189. 2015.

[16] A. Brodsky, C. Frakas, and S. Jajodia. “Secure Databases: Constraints, Infer-
ence Channels, and Monitoring Disclosures”. In: IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 12.6 (2000).

[17] B. B. Brumley and N. Tuveri. “Remote Timing Attacks are Still Practical”. In:
European Symposium on Research in Computer Security (ESORICS). 2011.

[18] D. Brumley and D. Boneh. “Remote Timing Attacks are Practical”. In: Com-
puter Networks 48.5 (2005).

[19] X. Cai, R. Nithyanand, and R. Johnson. “CS-BuFLO: A Congestion Sensitive
Website Fingerprinting Defense”. In: ACM Workshop on Privacy in the Elec-
tronic Society (WPES). 2014.

[20] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. “Touching from a Distance:
Website Fingerprinting Attacks and Defenses”. In: ACM Conference on Com-
puter and Communications Security (CCS). 2012.

[21] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. “A Systematic
Approach to Developing and Evaluating Website Fingerprinting Defenses”.
In: ACM Conference on Computer and Communications Security (CCS). 2014.

[22] California Consumer Privacy Act. https://leginfo.legislature.ca.gov/
faces/billTextClient.xhtml?bill_id=201720180AB375. 2019.

[23] Capital One data breach. https://www.cnet.com/news/capital-one-data-
breach-involves-100-million-credit-card-applications. 2019.

http://arxiv.org/abs/1506.00189
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://www.cnet.com/news/capital-one-data-breach-involves-100-million-credit-card-applications
https://www.cnet.com/news/capital-one-data-breach-involves-100-million-credit-card-applications

Bibliography 119

[24] R. Chen, I. E. Akkus, and P. Francis. “SplitX: High-performance Private An-
alytics”. In: ACM Conference on Special Interest Group on Data Communication
(SIGCOMM). 2013.

[25] S. Chen, R. Wang, X. Wang, and K. Zhang. “Side-Channel Leaks in Web Ap-
plications: A Reality Today, a Challenge Tomorrow”. In: IEEE Symposium on
Security and Privacy (S&P). 2010.

[26] H. Cheng and R. Avnur. Traffic Analysis of SSL Encrypted Web Browsing. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1201. 1998.

[27] R. C. Chiang, S. Rajasekaran, N. Zhang, and H. H. Huang. “Swiper: Exploit-
ing Virtual Machine Vulnerability in Third-Party Clouds with Competition
for I/O Resources”. In: IEEE Transactions on Parallel and Distributed Systems
(TPDS) 26.6 (2015).

[28] G. Chinis, P. Pratikakis, S. Ioannidis, and E. Athanasopoulos. “Practical Infor-
mation Flow for Legacy Web Applications”. In: Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS). 2013.

[29] A. Chlipala. “Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications”. In: USENIX Conference on Operating Systems
Design and Implementation (OSDI). 2010.

[30] S. Chong, K. Vikram, and A. C. Myers. “SIF: Enforcing Confidentiality and
Integrity in Web Applications”. In: USENIX Security Symposium. 2007.

[31] J. V. Cleemput, B. Coppens, and B. De Sutter. “Compiler Mitigations for Time
Attacks on Modern x86 Processors”. In: ACM Transactions on Architecture and
Code Optimizations (TACO) 8.4 (2012).

[32] J. V. Cleemput, B. D. Sutter, and K. D. Bosschere. “Adaptive Compiler Strate-
gies for Mitigating Timing Side Channel Attacks”. In: IEEE Transactions on
Dependable and Secure Computing (TDSC) 17.1 (2020).

[33] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. “Practical Mit-
igations for Timing-Based Side-Channel Attacks on Modern x86 Processors”.
In: IEEE Symposium on Security and Privacy (S&P). 2009.

[34] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi. “Obladi:
Oblivious Serializable Transactions in the Cloud”. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 2018.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1201
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1201

120 Bibliography

[35] M. Dalton, C. Kozyrakis, and N. Zeldovich. “Nemesis: Preventing Authen-
tication & Access Control Vulnerabilities in Web Applications.” In: USENIX
Security Symposium. 2009.

[36] G. Danezis. Traffic Analysis of the HTTP Protocol over TLS. 2009.

[37] B. Davis and H. Chen. “DBTaint: Cross-application Information Flow Track-
ing via Databases”. In: USENIX Conference on Web Application development
(WebApps). 2010.

[38] Delivering Live YouTube Content via DASH. https://developers.google.
com/youtube/v3/live/guides/encoding- with- dash. Accessed 31 Aug
2020.

[39] Django. https://www.djangoproject.com/. Accessed 31 Aug 2020.

[40] Django-CRM. https://github.com/MicroPyramid/Django-CRM. Accessed 31
Aug 2020.

[41] Drupal Commerce. https://www.drupal.org/project/commerce. Accessed
31 Aug 2020.

[42] C. Dwork. “Differential Privacy”. In: International Colloquium on Automata,
Languages and Programming (ICALP). 2006.

[43] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. “Peek-a-Boo, I Still See
You: Why Efficient Traffic Analysis Countermeasures Fail”. In: IEEE Sympo-
sium on Security and Privacy (S&P). 2012.

[44] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. “Protocol Misidenti-
fication Made Easy with Format-Transforming Encryption”. In: ACM Confer-
ence on Computer and Communications Security (CCS). 2013.

[45] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Druschel.
“Thoth: Comprehensive Policy Compliance in Distributed Data Retrieval Sys-
tems”. In: USENIX Security Symposium. 2016.

[46] Equifax data breach. https://www.cnet.com/news/equifax- data- leak-
hits-nearly-half-of-the-us-population. 2017.

[47] S. Eskandarian and M. Zaharia. ObliDB: Oblivious Query Processing for Secure
Databases. http://arxiv.org/abs/1710.00458. 2019.

[48] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: At-
tacking Branch Predictors to Bypass ASLR”. In: IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 2016.

https://developers.google.com/youtube/v3/live/guides/encoding-with-dash
https://developers.google.com/youtube/v3/live/guides/encoding-with-dash
https://www.djangoproject.com/
https://github.com/MicroPyramid/Django-CRM
https://www.drupal.org/project/commerce
https://www.cnet.com/news/equifax-data-leak-hits-nearly-half-of-the-us-population
https://www.cnet.com/news/equifax-data-leak-hits-nearly-half-of-the-us-population
http://arxiv.org/abs/1710.00458

Bibliography 121

[49] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev. “Branch-
scope: A New Side-Channel Attack on Directional Branch Predictor”. In: ACM
SIGPLAN Notices 53.2 (2018).

[50] eXtensible Access Control Markup Language (XACML) v3.0. http://www.oasis-
open.org/committees/xacml. Accessed 31 Aug 2020.

[51] K. Eykholt, A. Prakash, and B. Mozafari. “Ensuring Authorized Updates in
Multi-User Database-Backed Applications”. In: USENIX Security Symposium.
2017.

[52] Facebook: Improved Search Could Surface Embarrassing Old Posts. https://abcnews.
go.com/Technology/facebook-improved-search-surface-embarrassing-

posts/story?id=27469264. 2014.

[53] Facebook Photo API bug. https://www.zdnet.com/article/facebook-bug-
exposed-private-photos-of-6-8-million-users. 2018.

[54] Facebook says it ’unintentionally uploaded’ 1.5 million people’s email contacts with-
out their consent. https://www.businessinsider.com/facebook-uploaded-
1-5-million-users-email-contacts-without-permission-2019-4. 2019.

[55] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner. “Diesel: Applying Privi-
lege Separation to Database Access”. In: ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS). 2011.

[56] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas. “Sup-
pressing the Oblivious RAM Timing Channel while Making Information Leak-
age and Program Efficiency Trade-offs”. In: IEEE International Symposium on
High Performance Computer Architecture (HPCA). 2014.

[57] W. Foundation. enwiki HTML dump. http://dumps.wikimedia.org/. Ac-
cessed 31 Aug 2020.

[58] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. “A Survey of Microarchitectural
Timing attacks and Countermeasures on Contemporary Hardware”. In: Jour-
nal of Cryptographic Engineering (JCEN) 8 (2018).

[59] General Data Protection Regulation. “Regulation (EU) 2016/679 of the Eu-
ropean Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC”. In: Offi-
cial Journal of the European Union 59 (2016), pp. 1–88. URL: https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

http://www.oasis-open.org/committees/xacml
http://www.oasis-open.org/committees/xacml
https://abcnews.go.com/Technology/facebook-improved-search-surface-embarrassing-posts/story?id=27469264
https://abcnews.go.com/Technology/facebook-improved-search-surface-embarrassing-posts/story?id=27469264
https://abcnews.go.com/Technology/facebook-improved-search-surface-embarrassing-posts/story?id=27469264
https://www.zdnet.com/article/facebook-bug-exposed-private-photos-of-6-8-million-users
https://www.zdnet.com/article/facebook-bug-exposed-private-photos-of-6-8-million-users
https://www.businessinsider.com/facebook-uploaded-1-5-million-users-email-contacts-without-permission-2019-4
https://www.businessinsider.com/facebook-uploaded-1-5-million-users-email-contacts-without-permission-2019-4
http://dumps.wikimedia.org/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

122 Bibliography

[60] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell, and A.
Russo. “Hails: Protecting Data Privacy in Untrusted Web Applications”. In:
USENIX Conference on Operating Systems Design and Implementation (OSDI).
2012.

[61] V. D. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted Sys-
tems. Vol. 30. https://apps.dtic.mil/dtic/tr/fulltext/u2/a477651.pdf.
National Computer Security Center, 1994.

[62] X. Gong and N. Kiyavash. “Quantifying the Information Leakage in Tim-
ing Side Channels in Deterministic Work-conserving Schedulers”. In:
IEEE/ACM Transactions on Networking (TON) 24.3 (2016).

[63] X. Gong, N. Borisov, N. Kiyavash, and N. Schear. “Website Detection Us-
ing Remote Traffic Analysis”. In: Privacy Enhancing Technologies Symposium
(PETS). 2012.

[64] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http : / / www .
deeplearningbook.org. MIT Press, 2016.

[65] A. Grünbacher. “POSIX Access Control Lists on Linux”. In: USENIX Annual
Technical Conference (ATC), FREENIX Track. 2003.

[66] M. Guarnieri, S. Marinovic, and D. A. Basin. Strong and Provably Secure Database
Access Control. http://arxiv.org/abs/1512.01479. 2015.

[67] J. Hayes and G. Danezis. “k-fingerprinting: A Robust Scalable Website Fin-
gerprinting Technique”. In: USENIX Security Symposium. 2016.

[68] T. Haynes and D. Noveck. “Network File System (NFS) v4 Protocol”. In: RFC
7530 (2015).

[69] Heartbleed (CVE-2014-0160). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-0160. 2014.

[70] Here’s everything a cyber criminal can do if they steal your credit card. https:
//www.cnbc.com/2019/09/26/heres-everything-cyber-criminals-can-

do-if-they-steal-your-credit-card.html. 2019.

[71] D. Herrmann, R. Wendolsky, and H. Federrath. “Website Fingerprinting: At-
tacking Popular Privacy Enhancing Technologies with the Multinomial Naïve-
bayes Classifier”. In: ACM Cloud Computing Security Workshop (CCSW). 2009.

[72] Hierarchical Token Bucket for Linux. http://luxik.cdi.cz/~devik/qos/htb.
Accessed 31 Aug 2020.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a477651.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1512.01479
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://www.cnbc.com/2019/09/26/heres-everything-cyber-criminals-can-do-if-they-steal-your-credit-card.html
https://www.cnbc.com/2019/09/26/heres-everything-cyber-criminals-can-do-if-they-steal-your-credit-card.html
https://www.cnbc.com/2019/09/26/heres-everything-cyber-criminals-can-do-if-they-steal-your-credit-card.html
http://luxik.cdi.cz/~devik/qos/htb

Bibliography 123

[73] A. Hintz. “Fingerprinting Websites Using Traffic Analysis”. In: International
Conference on Privacy Enhancing Technologies (PET). 2002.

[74] HotCRP Conference Management Software. http://www.read.seas.harvard.
edu/~kohler/hotcrp. Accessed 31 Aug 2020.

[75] HotCRP release news. http://read.seas.harvard.edu/~kohler/hotcrp/
news.html. Accessed 31 Aug 2020.

[76] HTTP Live Streaming (HLS). https://en.wikipedia.org/wiki/HTTP_Live_
Streaming. Accessed 31 Aug 2020.

[77] Implementing row level security in MySQL. https://www.sqlmaestro.com/en/
resources/all/row_level_security_mysql. Accessed 31 Aug 2020.

[78] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth, and B. Sunar. “Se-
riously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud”.
In: IACR Cryptology ePrint Archive 2015.1-15 (2015).

[79] M. S. İnci, G. Irazoqui, T. Eisenbarth, and B. Sunar. “Efficient, adversarial
neighbor discovery using logical channels on Microsoft Azure”. In: Annual
Conference on Computer Security Applications (ACSAC). 2016.

[80] G. Irazoqui, T. Eisenbarth, and B. Sunar. “S$A: A Shared Cache Attack That
Works across Cores and Defies VM Sandboxing–and Its Application to AES”.
In: IEEE Symposium on Security and Privacy (S&P). 2015.

[81] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. “Fine grain Cross-VM
Attacks on Xen and VMware are possible!” In: IEEE International Conference
on Big Data and Cloud Computing (BDCLOUD). 2014.

[82] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. “Wait a minute! A fast,
Cross-VM attack on AES”. In: International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID). 2014.

[83] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. “Silo: Predictable Message
Latency in the Cloud”. In: ACM Conference on Special Interest Group on Data
Communication (SIGCOMM). 2015.

[84] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam. “Mitigating Timing
Side Channel in Shared Schedulers”. In: IEEE/ACM Transactions on Network-
ing (TON) 24.3 (2016).

http://www.read.seas.harvard.edu/~kohler/hotcrp
http://www.read.seas.harvard.edu/~kohler/hotcrp
http://read.seas.harvard.edu/~kohler/hotcrp/news.html
http://read.seas.harvard.edu/~kohler/hotcrp/news.html
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://www.sqlmaestro.com/en/resources/all/row_level_security_mysql
https://www.sqlmaestro.com/en/resources/all/row_level_security_mysql

124 Bibliography

[85] S. Kanav, P. Lammich, and A. Popescu. “A Conference Management System
with Verified Document Confidentiality”. In: International Conference on Com-
puter Aided Verification (CAV). 2014.

[86] S Kent and K Seo. Security Architecture for IP. https://tools.ietf.org/
html/rfc4301. 2005.

[87] Keras API. https://keras.io/. Accessed 31 Aug 2020.

[88] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. http:
//arxiv.org/abs/1412.6980. 2014.

[89] P. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”. In: Advances in Cryptology – CRYPTO. 1996.

[90] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi. “Net-
CAT: Practical Cache Attacks from the Network”. In: IEEE Symposium on Se-
curity and Privacy (S&P). 2019.

[91] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, et al. “The QUIC Transport Protocol: Design
and Internet-Scale Deployment”. In: ACM Conference on Special Interest Group
on Data Communication (SIGCOMM). 2017.

[92] D. Lazar, Y. Gilad, and N. Zeldovich. “Karaoke: Distributed Private Messag-
ing Immune to Passive Traffic Analysis”. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 2018.

[93] D. Lazar, Y. Gilad, and N. Zeldovich. “Yodel: Strong Metadata Security for
Voice Calls”. In: ACM Symposium on Operating Systems Principles (SOSP). 2019.

[94] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt. “Herd: A
Scalable, Traffic Analysis Resistant Anonymity Network for VoIP Systems”.
In: ACM Conference on Special Interest Group on Data Communication (SIGCOMM).
2015.

[95] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. “Inferring Fine-
Grained Control Flow Inside SGX Enclaves with Branch Shadowing”. In:
USENIX Security Symposium. 2017.

[96] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y.-r. Xu, and D. De-
Witt. “Limiting Disclosure in Hippocratic Databases”. In: International Con-
ference on Very Large Data Bases (VLDB). 2004.

https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301
https://keras.io/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Bibliography 125

[97] N. Li and J. C. Mitchell. “Datalog with Constraints: A Foundation for Trust
Management Languages”. In: International Symposium on Practical Aspects of
Declarative Languages (PADL). 2003.

[98] P. Li, D. Gao, and M. K. Reiter. “Stopwatch: A Cloud Architecture for Timing
Channel Mitigation”. In: ACM Transactions on Information and System Security
(TISSEC) 17.2 (2014).

[99] P. Li and S. Zdancewic. “Practical Information-flow Control in Web-Based
Information Systems”. In: IEEE Workshop on Computer Security Foundations
(CSFW). 2005.

[100] S. Li, H. Guo, and N. Hopper. “Measuring Information Leakage in Website
Fingerprinting Attacks and Defenses”. In: ACM Conference on Computer and
Communications Security (CCS). 2018.

[101] M. Liberatore and B. N. Levine. “Inferring the Source of Encrypted HTTP
Connections”. In: ACM Conference on Computer and Communications Security
(CCS). 2006.

[102] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, B. Bhattacharjee, and
P. Druschel. “Light-Weight Contexts: An OS Abstraction for Safety and Per-
formance”. In: USENIX Conference on Operating Systems Design and Implemen-
tation (OSDI). 2016.

[103] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-
Channel Attacks are Practical”. In: IEEE Symposium on Security and Privacy
(S&P). 2015.

[104] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. “Cata-
lyst: Defeating Last-Level Cache Side Channel Attacks in Cloud Computing”.
In: IEEE International Symposium on High Performance Computer Architecture
(HPCA). 2016.

[105] W. Liu, D. Gao, and M. K. Reiter. “On-Demand Time Blurring to Support
Side-Channel Defense”. In: European Symposium on Research in Computer Se-
curity (ESORICS). 2017.

[106] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman. “Shroud: En-
suring Private Access to Large-Scale Data in the Data Center”. In: USENIX
Conference on File and Storage Technologies (FAST). 2013.

126 Bibliography

[107] D. Lu, S. Bhat, A. Kwon, and S. Devadas. “DynaFlow: An Efficient Website
Fingerprinting Defense Based on Dynamically-Adjusting Flows”. In: ACM
Workshop on Privacy in the Electronic Society (WPES). 2018.

[108] P. D. Marinescu, C. Perry, M. Pomarole, T. Yuan, P. Tague, and I. Papagian-
nis. “IVD: Automatic Learning and Enforcement of Authorization Rules in
Online Social Networks”. In: IEEE Symposium on Security and Privacy (S&P).
2017.

[109] Marriott data breach. https://www.cnet.com/news/marriott-data-breach-
impacts-500-million-starwood-hotel-guests. 2018.

[110] R. Martin, J. Demme, and S. Sethumadhavan. “TimeWarp: Rethinking Time-
keeping and Performance Monitoring Mechanisms to Mitigate Side-channel
Attacks”. In: International Symposium on Computer Architecture (ISCA). 2012.

[111] F. McSherry. “Privacy Integrated Queries: An Extensible Platform for Privacy-
preserving Data Analysis”. In: ACM International Conference on Management of
Data (SIGMOD). 2009.

[112] MediaWiki. https://www.mediawiki.org/wiki/MediaWiki_1.27. Accessed
31 Aug 2020.

[113] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Druschel. “Qapla: policy
compliance in database-backed applications”. In: USENIX Security Sympo-
sium. 2017.

[114] A. Mehta, M. Alzayat, R. D. Viti, B. Brandenburg, P. Druschel, and D. Garg.
Pacer: Network Side-Channel Mitigation in the Cloud. http://arxiv.org/abs/
1908.11568. 2019.

[115] Microsoft accidently exposed 250 million customer service records. https://www.
engadget.com/2020-01-22-microsoft-database-exposure.html. 2020.

[116] Millions of Facebook user phone numbers exposed online. https://www.cnet.
com/news/millions-of-facebook-user-phone-numbers-exposed-online-

security-researchers-say. 2019.

[117] Min-Max Normalization. https://en.wikipedia.org/wiki/Feature_scaling#
Rescaling_(min-max_normalization). Accessed 31 Aug 2020.

[118] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg. “Skype-
morph: Protocol Obfuscation for Tor Bridges”. In: ACM Conference on Com-
puter and Communications Security (CCS). 2012.

https://www.cnet.com/news/marriott-data-breach-impacts-500-million-starwood-hotel-guests
https://www.cnet.com/news/marriott-data-breach-impacts-500-million-starwood-hotel-guests
https://www.mediawiki.org/wiki/MediaWiki_1.27
http://arxiv.org/abs/1908.11568
http://arxiv.org/abs/1908.11568
https://www.engadget.com/2020-01-22-microsoft-database-exposure.html
https://www.engadget.com/2020-01-22-microsoft-database-exposure.html
https://www.cnet.com/news/millions-of-facebook-user-phone-numbers-exposed-online-security-researchers-say
https://www.cnet.com/news/millions-of-facebook-user-phone-numbers-exposed-online-security-researchers-say
https://www.cnet.com/news/millions-of-facebook-user-phone-numbers-exposed-online-security-researchers-say
https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)
https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)

Bibliography 127

[119] MPEG-DASH. https : / / en . wikipedia . org / wiki / Dynamic _ Adaptive _
Streaming_over_HTTP. Accessed 31 Aug 2020.

[120] MySQL 5.7.16. https://dev.mysql.com/downloads/mysql. Accessed 31 Aug
2020.

[121] MySQL Workbench. http://mysqlworkbench.org/. Accessed 31 Aug 2020.

[122] NapaTech SmartNIC, Feature Overview Data Sheet. https://www.napatech.
com / support / resources / data - sheets / napatech - smartnic - feature -

overview/. Accessed 31 Aug 2020.

[123] R. Nithyanand, X. Cai, and R. Johnson. “Glove: A Bespoke Website Finger-
printing Defense”. In: ACM Workshop on Privacy in the Electronic Society (WPES).
2014.

[124] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa. “Oblivious Multi-Party Machine Learning on Trusted Proces-
sors”. In: USENIX Security Symposium. 2016.

[125] D. Ongaro, A. L. Cox, and S. Rixner. “Scheduling I/O in virtual machine
monitors”. In: ACM International Conference on Virtual Execution Environments
(VEE). 2008.

[126] OpenCart. https://github.com/opencart/opencart. Accessed 31 Aug 2020.

[127] OpenSource Social Network. https://github.com/opensource-socialnetwork/
opensource-socialnetwork. Accessed 31 Aug 2020.

[128] OpenSSL 1.1.1b. https://github.com/openssl/openssl/releases/tag/
OpenSSL_1_1_1b. Accessed 31 Aug 2020.

[129] Optimal Adaptive Streaming Formats MPEG-DASH & HLS Segment Length. https:
//bitmovin.com/mpeg-dash-hls-segment-length/. Accessed 31 Aug 2020.

[130] Oracle Transparent Sensitive Data Protection. https : / / docs . oracle . com /
database/121/DBSEG/tsdp.htm#DBSEG855. Accessed 31 Aug 2020.

[131] D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermea-
sures: The Case of AES”. In: The Cryptographers’ Track at the RSA Conference on
Topics in Cryptology (CT-RSA). 2006.

[132] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. http:
//www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625. 2002.

https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://dev.mysql.com/downloads/mysql
http://mysqlworkbench.org/
https://www.napatech.com/support/resources/data-sheets/ napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/ napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/ napatech-smartnic-feature-overview/
https://github.com/opencart/opencart
https://github.com/opensource-socialnetwork/opensource-socialnetwork
https://github.com/opensource-socialnetwork/opensource-socialnetwork
https://github.com/openssl/openssl/releases/tag/OpenSSL_1_1_1b
https://github.com/openssl/openssl/releases/tag/OpenSSL_1_1_1b
https://bitmovin.com/mpeg-dash-hls-segment-length/
https://bitmovin.com/mpeg-dash-hls-segment-length/
https://docs.oracle.com/database/121/DBSEG/tsdp.htm#DBSEG855
https://docs.oracle.com/database/121/DBSEG/tsdp.htm#DBSEG855
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625

128 Bibliography

[133] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. “Website Fingerprinting
in Onion Routing Based Anonymization Networks”. In: ACM Workshop on
Privacy in the Electronic Society (WPES). 2011.

[134] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig. “CLAMP:
Practical Prevention of Large-Scale Data Leaks”. In: IEEE Symposium on Secu-
rity and Privacy (S&P). 2009.

[135] C. Percival. “Cache Missing for Fun and Profit”. In: BSDCan. 2005.

[136] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Ex-
ploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016.

[137] PHP Data Objects (PDO). http://php.net/manual/en/intro.pdo.php.
Accessed 31 Aug 2020.

[138] PHP MySQL Improved Extension. http://php.net/manual/en/book.mysqli.
php. Accessed 31 Aug 2020.

[139] A. Pimlott and O. Kiselyov. “Soutei, a Logic-Based Trust-Management Sys-
tem”. In: International Symposium on Functional and Logic Programming (FLOPS).
2006.

[140] PostgreSQL 9.5.3 Documentation. https://www.postgresql.org/docs/current/
static/ddl-rowsecurity.html. Accessed 31 Aug 2020.

[141] Protect Your Data: Row-level Security in MariaDB 10.0. https://mariadb.com/
blog/protect-your-data-row-level-security-mariadb-100. 2015.

[142] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao. “Who Is Your
Neighbor: Net I/O Performance Interference in Virtualized Clouds”. In: IEEE
Transactions on Services Computing (TSC) 6.3 (2013).

[143] A. Richter, C. Herber, S. Wallentowitz, T. Wild, and A. Herkersdorf. “A Hard-
ware/Software Approach for Mitigating Performance Interference Effects in
Virtualized Environments Using SR-IOV”. In: IEEE International Conference on
Cloud Computing (CLOUD). 2015.

[144] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You, Get off of My
Cloud: Exploring Information Leakage in Third-party Compute Clouds”. In:
ACM Conference on Computer and Communications Security (CCS). 2009.

http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.mysqli.php
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html
https://mariadb.com/blog/protect-your-data-row-level-security-mariadb-100
https://mariadb.com/blog/protect-your-data-row-level-security-mariadb-100

Bibliography 129

[145] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. “Extending Query Rewrit-
ing Techniques for Fine-grained Access Control”. In: ACM International Con-
ference on Management of Data (SIGMOD). 2004.

[146] E. T. Roei Schuster Vitaly Shmatikov. “Beauty and the Burst: Remote Identi-
fication of Encrypted Video Streams”. In: USENIX Security Symposium. 2017.

[147] Row and Column Access Control Support in IBM DB2 for i. http://www.redbooks.
ibm.com/redpapers/pdfs/redp5110.pdf. 2014.

[148] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, T. Kohno, et al. “Devices
That Tell On You: Privacy Trends in Consumer Ubiquitous Computing”. In:
USENIX Security Symposium. 2007.

[149] D. Schoepe, D. Hedin, and A. Sabelfeld. “SeLINQ: Tracking Information Across
Application-database Boundaries”. In: SIGPLAN Notes 49.9 (2014).

[150] D. Schultz and B. Liskov. “IFDB: Decentralized Information Flow Control
for Databases”. In: ACM European Conference on Computer Systems (EuroSys).
2013.

[151] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and
Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”.
In: International Conference on Financial Cryptography and Data Security (FC).
2017, pp. 247–267.

[152] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss. “NetSpectre:
Read Arbitrary Memory over Network”. In: European Symposium on Research
in Computer Security (ESORICS). 2019.

[153] D. X. Song, D. Wagner, and X. Tian. “Timing Analysis of Keystrokes and Tim-
ing Attacks on SSH”. In: USENIX Security Symposium. 2001.

[154] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mohan, and R. Campbell.
“Scheduling, Isolation, and Cache Allocation: A Side-Channel Defense”. In:
IEEE International Conference on Cloud Engineering (IC2E). 2018.

[155] SQL Server 2016 Technical Documentation. https://docs.microsoft.com/en-
us/sql/relational- databases/security/row- level- security?view=

sql-server-ver15. Accessed 31 Aug 2020.

[156] SQL Server Dynamic Data Masking. https://docs.microsoft.com/en-us/
sql/relational-databases/security/dynamic-data-masking?view=sql-

server-ver15. Accessed 31 Aug 2020.

http://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15

130 Bibliography

[157] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L.
Qiu. “Statistical Identification of Encrypted Web Browsing Traffic”. In: IEEE
Symposium on Security and Privacy (S&P). 2002.

[158] L. Sweeney. “K-anonymity: A Model for Protecting Privacy”. In: International
Journal of Uncertainty Fuzziness Knowledge-Based Systems 10.5 (2002).

[159] J. Szefer. “Survey of Microarchitectural Side and Covert Channels, Attacks,
and Defenses”. In: Journal of Hardware and Systems Security 3.3 (2019).

[160] The Cambridge Analytica Scandal. https://www.theguardian.com/news/2018/
mar/17/cambridge-analytica-facebook-influence-us-election. 2018.

[161] The Virtual Private Database in Oracle9iR2. http://www.cgisecurity.com/
database/oracle/pdf/VPD9ir2twp.pdf. 2002.

[162] T. S. Toland, C. Frakas, and C. M. Eastman. “The Inference Problem: Main-
taining Maximal Availability in the Presence of Database Updates”. In: Com-
puters and Security Journal 29.1 (2010).

[163] U. Turan and I. H. Toroslu. Privacy Preserving Secure Decomposition Algorithm
for Attribute Based Access Control Mechanism. http://arxiv.org/abs/1402.
5742. 2014.

[164] L. Uhsadel, A. Georges, and I. Verbauwhede. “Exploiting Hardware Perfor-
mance Counters”. In: Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy (FDTC). 2008.

[165] P. Upadhyaya, M. Balazinska, and D. Suciu. “Automatic Enforcement of Data
Use Policies with DataLawyer”. In: ACM International Conference on Manage-
ment of Data (SIGMOD). 2015.

[166] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel, A. Post,
R. Rodriguez, and J. Gehrke. “Guardat: Enforcing data policies at the storage
layer”. In: European Conference on Computing Systems (EuroSys). 2015.

[167] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M.
Silberstein, T. Wenisch, Y. Yarom, and R. Strackx. “Foreshadow: Extracting
the keys to the intel SGX kingdom with transient out-of-order execution”. In:
USENIX Security Symposium. 2018.

[168] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. “Vuvuzela: Scal-
able Private Messaging Resistant to Traffic Analysis”. In: ACM Symposium on
Operating Systems Principles (SOSP). 2015.

https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
http://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
http://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
http://arxiv.org/abs/1402.5742
http://arxiv.org/abs/1402.5742

Bibliography 131

[169] V. Varadarajan, T. Ristenpart, and M. Swift. “Scheduler-based Defenses against
Cross-VM Side-channels”. In: USENIX Security Symposium. 2014.

[170] B. C. Vattikonda, S. Das, and H. Shacham. “Eliminating Fine Grained Timers
in Xen”. In: ACM Cloud Computing Security Workshop (CCSW). 2011.

[171] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. “Practical TDMA
for Datacenter Ethernet”. In: ACM European Conference on Computer Systems
(EuroSys). 2012.

[172] P. Vila and B. Köpf. “Loophole: Timing Attacks on Shared Event Loops in
Chrome”. In: USENIX Security Symposium. 2017.

[173] D. Volpano and G. Smith. “Probabilistic Noninterference in a Concurrent
Language”. In: Journal of Computer Security (JCS) 7.2-3 (1999).

[174] T. Wang and I. Goldberg. “Improved Website Fingerprinting on Tor”. In:
ACM Workshop on Privacy in the Electronic Society (WPES). 2013.

[175] T. Wang and I. Goldberg. “Walkie-Talkie: An Efficient Defense Against Pas-
sive Website Fingerprinting Attacks”. In: USENIX Security Symposium. 2017.

[176] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. “Effective At-
tacks and Provable Defenses for Website Fingerprinting”. In: USENIX Secu-
rity Symposium. 2014.

[177] P. Winter, T. Pulls, and J. Fuss. “ScrambleSuit: A Polymorphic Network Proto-
col to Circumvent Censorship”. In: ACM Workshop on Privacy in the Electronic
Society (WPES). 2013.

[178] C. V. Wright, S. E. Coull, and F. Monrose. “Traffic Morphing: An Efficient De-
fense Against Statistical Traffic Analysis”. In: Network and Distributed System
Security Symposium (NDSS). 2009.

[179] C. V. Wright, F. Monrose, and G. M. Masson. “On Inferring Application Pro-
tocol Behaviors in Encrypted Network Traffic”. In: Journal of Machine Learning
Research (JMLR) 7 (2006).

[180] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson. “Spot me
if you can: Uncovering spoken phrases in encrypted VoIP conversations”. In:
IEEE Symposium on Security and Privacy (S&P). 2008.

[181] wrk2: A constant throughput, correct latency recording variant of wrk. https:
//github.com/giltene/wrk2. Accessed 31 Aug 2020.

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2

132 Bibliography

[182] W. Wu and B. Ford. “Deterministically Deterring Timing Attacks in Deter-
land”. In: Conference on Timely Results in Operating Systems (TRIOS). 2015.

[183] XACML Products and Deployments. http://docs.oasis-open.org/xacml/
xacmlRefs.html#Products. Accessed 31 Aug 2020.

[184] Xen hypervisor. https://xenproject.org/. Accessed 31 Aug 2020.

[185] Xen Null scheduler. https://patchwork.kernel.org/patch/9669405/. 2017.

[186] Y. Xu, W. Cui, and M. Peinado. “Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems”. In: IEEE Symposium on Se-
curity and Privacy (S&P). 2015.

[187] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and S. Chong.
“Precise, Dynamic Information Flow for Database-backed Applications”. In:
ACM Conference on Programming Language Design and Implementation (PLDI).
2016.

[188] Y. Yarom and K. Falkner. “FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

[189] Y. Yarom, D. Genkin, and N. Heninger. “CacheBleed: a timing attack on Open-
SSL constant-time RSA”. In: Journal of Cryptographic Engineering (JCEN) 7.2
(2017).

[190] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. “Improving Application
Security with Data Flow Assertions”. In: ACM Symposium on Operating Sys-
tems Principles (SOSP). 2009.

[191] S. Zander, G. Armitage, and P. Branch. “A survey of covert channels and
countermeasures in computer network protocols”. In: IEEE Communications
Surveys & Tutorials 9.3 (2007).

[192] D. Zhang, A. Askarov, and A. C. Myers. “Predictive Mitigation of Timing
Channels in Interactive Systems”. In: ACM Conference on Computer and Com-
munications Security (CCS). 2011.

[193] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang. “Statistical Privacy for Stream-
ing Traffic”. In: Network and Distributed Systems Security (NDSS). 2019.

[194] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-VM side channels
and their use to extract private keys”. In: ACM Conference on Computer and
Communications Security (CCS). 2012.

http://docs.oasis-open.org/xacml/xacmlRefs.html#Products
http://docs.oasis-open.org/xacml/xacmlRefs.html#Products
https://xenproject.org/
https://patchwork.kernel.org/patch/9669405/

Bibliography 133

[195] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-VM Side Channels
and Their Use to Extract Private Keys”. In: ACM Conference on Computer and
Communications Security (CCS). 2012.

[196] Y. Zhou and D. Wentzlaff. “MITTS: Memory Inter-arrival Time Traffic Shap-
ing”. In: ACM SIGARCH Computer Architecture News 44.3 (2016).

[197] Z. Zhou, M. K. Reiter, and Y. Zhang. “A Software Approach to Defeating
Side Channels in Last-Level Caches”. In: ACM Conference on Computer and
Communications Security (CCS). 2016.

	Abstract
	Kurzdarstellung
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	Introduction
	Thesis contributions
	Qapla: Policy compliance in database-backed systems
	Pacer: Network side-channel mitigation in cloud applications

	Publications and collaborations
	Organization

	Background and Prior Work
	Data policies
	Compliance system
	Direct data disclosures
	Accidental disclosures and active exploits
	Preventing accidental disclosures

	Side-channel disclosures
	Understanding side channels
	Mitigating side-channel disclosures

	Qapla: Policy Compliance in Database-backed Systems
	Motivation
	Design overview
	Threat model
	Policy framework
	Single column policies
	Link policies
	Transformation policies
	Aggregation policies
	Relation between policy classes
	Policy inference heuristics

	Enforcement
	Identifying applicable policies
	Query rewriting algorithm
	Optimizations
	Query template cache
	Partial evaluation
	Materialized views

	Compatibility with legacy applications
	Implementation
	Case studies
	HotCRP
	APPLY

	Evaluation
	Experimental setup
	Microbenchmark
	Application latency benchmarks
	HotCRP
	APPLY

	HotCRP throughput benchmark
	Comparison with DBMS access control
	Compatibility analysis
	Security validation

	Discussion
	Isolation of the reference monitor
	User authentication
	Protection against offline linking attacks
	Support for logging

	Related work
	Database access control
	Access control in production DBMSs
	Database interposition
	Policy specification frameworks
	CMS confidentiality
	Privacy in statistical databases
	Information Flow Control

	HotCRP policies specified in Qapla
	APPLY policies specified in Qapla

	Pacer: Network Side-Channel Mitigation in the cloud
	Network side channels
	Background
	Attack demonstration
	Experimental setup
	Analysis

	Threat model
	Key ideas
	Cloaked tunnel
	Tunnel requirements
	Architecture
	Tunnel security

	Pacer design
	Pacer architecture
	HyPace
	GPace

	Pacer security

	Generating schedules
	Gray-box profiling
	Corpus analysis

	Implementation
	Evaluation
	Experimental setup
	Spatial padding overhead
	Microbenchmarks
	Video streaming
	Document server

	Extensions
	Interactive client requests
	Multi-tier services
	Dynamic content
	Private VPN services
	Automated discovery of workload partitions
	Schedule adaptation

	Related work
	Mitigating network side channels in clouds
	Traffic-shaping systems to mitigate network side channels
	Predictive mitigation
	Related work with other threat models
	Related work with non-security goals

	Conclusion
	Summary of results
	Future work
	Compliance for next-generation cloud applications
	Efficient mitigation of side channels

	Bibliography

