
Relocate-Vote: Using Sparsity Information to Exploit Ciphertext Side-Channels

Yuqin Yan†, Wei Huang†‡, Ilya Grishchenko†, Gururaj Saileshwar†, Aastha Mehta∗, and David Lie†

†University of Toronto, ‡Seneca Polytechnic, ∗University of British Columbia
yuqin.yan@mail.utoronto.ca, wei.huang1@senecapolytechnic.ca, gururaj@cs.toronto.edu,

aasthakm@cs.ubc.ca, {ilya.grishchenko,david.lie}@utoronto.ca

Abstract
Confidential computing implementations encrypt guest Vir-

tual Machine (VM) memory to protect workloads from a
malicious hypervisor. However, its use of system physical
addresses as tweak values causes deterministic encryption
for each physical memory address, creating a ciphertext side-
channel. To exploit this weakness, we propose Relocate-Vote,
a novel primitive that exposes frequency distributions across
various memory locations by abusing management commands
supported by confidential computing architectures such as
SNP_PAGE_MOVE in AMD SEV-SNP. Unlike previous attacks
that rely on secret information temporally written into spe-
cific locations, Relocate-Vote takes advantage of biases in
the distribution of values that applications naturally exhibit,
which are preserved under memory encryption with the same
tweak values, and uses the spatial distribution of those values
to leak sensitive information from confidential VMs. In this
work, we demonstrate the generality of this attack primitive
by using it to de-randomize Address Space Layout Random-
ization, extract 3D object data from OpenVDB, and leak token
information during sparse LLM inference.

1 Introduction

Confidential computing is gaining more focus due to its po-
tential for deploying sensitive workloads to the cloud even
when the hypervisor is not trusted [40]. Compared with the
traditional hardware and software stack, confidential comput-
ing prevents the hypervisor deployed by the cloud comput-
ing service provider from directly accessing and tampering
with the states of guest virtual machines, creating confiden-
tial virtual machines (CVMs). Major cloud service providers
(CSPs), including Microsoft Azure [28], Amazon Web Ser-
vices (AWS) [5], and Google Cloud Platform (GCP) [10], of-
fer CVM instances based on AMD SEV [2] and Intel TDX [9].

To protect the confidentiality of data in use, particularly
in the memory of a CVM, implementations of confidential
computing such as AMD SEV encrypt memory with a VM-
specific key. Using AES-based encryption in XEX or XTS

mode, 16-byte memory blocks are encrypted into 16-byte
ciphertexts. To prevent the same plaintext from generating the
same ciphertexts at different locations, tweak values derived
from physical addresses are incorporated as an additional in-
put that parameterizes a block ciphertext without altering the
key. However, recent studies have exploited the vulnerabil-
ity of address-based tweaks that causes identical plaintexts
in a CVM at the same system physical address (sPA) to be
encrypted to the same ciphertext. This deterministic output
reveals internal states and enables a malicious hypervisor
to exploit the collision of ciphertexts at the same location,
known as ciphertext side-channel [25]. Prior ciphertext side-
channel attacks have targeted cryptographic libraries [23, 25],
DNN weights [45], and inputs [44]. Existing attacks rely on
collision at specific memory locations over time, collecting
ciphertexts and analyzing collision patterns for each location
separately, as tweak values prevent analysis across different
memory locations. For instance, CipherSteal [44] records bi-
nary sequences that flag whether ciphertexts at specific mem-
ory locations change for each write operation during execu-
tion. However, pinpointing the memory locations for collect-
ing the ciphertext sequences remains challenging. Current
approaches either rely on a combination of the performance
monitoring unit (PMU) and precise implementation details of
cryptographic libraries [23] or lack end-to-end attack imple-
mentations and instead assume some capability, such as using
Intel PIN, to filter the write operations generated by the victim
applications from system-generated memory traffic [44, 45].

In this work, we present a new end-to-end attack that does
not rely on ciphertext collisions at specific locations. Instead,
our primitive, Relocate-Vote, leverages frequency distribution
biases of plaintext values. Because tweak values are physical-
address dependent, these biases are preserved in ciphertexts
for each memory location. This enables inferring the location
of highly frequent prevalent values in an application’s mem-
ory and extracting the spatial distribution of prevalent and
non-prevalent values. Common examples of prevalent values
are zeros or NULLs, and often used to represent a default or
unallocated state in applications. Many applications exhibit

sparsity, having a large proportion of prevalent values in their
memory, and the spatial distribution of the non-prevalent val-
ues in such applications can leak sensitive information about
the application.

Similar to previous works [23, 25, 44, 45], this paper as-
sumes the hypervisor is malicious and can access encrypted
states of the CVM. To sample the frequency distribution of
ciphertexts efficiently, our attack abuses management com-
mands such as SNP_PAGE_MOVE in AMD SEV-SNP that are
normally used by hypervisors to relocate confidential memory
pages. By misusing these commands to cause different physi-
cal pages to be encrypted with the same sPA, the attacker can
sample the ciphertext value distribution at arbitrary memory
locations and derive the ciphertext corresponding to prevalent
values. While previous attacks [25, 45] try to monitor ev-
ery write operation to specific locations since the secrets are
temporally written and missing write operations recordings
downgrades the attacks’ performance, our attack can reveal
secret sparsity information already populated as a snapshot
laid out in memory even without write operations, where the
spatially populated secrets persist until being overwritten.

To demonstrate the security implications of this primitive,
we present proof-of-concept attacks on three applications that
rely on sparsity. First, we show how Relocate-Vote enables
the de-randomization of ASLR for glibc addresses in ap-
plications running on CVMs, which is often the first step in
applying ROP [8]. In this scenario, the sparsity information
in the page table is already populated before the attack begins.
Second, we demonstrate how the 3D object structure can be
leaked during OpenVDB operations including construction
and read-only traversal, where the library is used in medical
image processing pipelines [20] and in industrial prototype
design workflows, such as rocket engine development [1].
The sparsity information encodes the spatial arrangement of
active voxels, enabling an attacker to reconstruct the object’s
geometric structure. Third, we show how Relocate-Vote can
be applied to extract the geographic information of input to-
kens in sparse large language model (LLM) inference, where
the ReLU activation function [31] is used for computational
efficiency [38]. The attacker exploits the sparsity introduced
by ReLU, which maps negative values to zero, to capture
activation patterns associated with secret tokens.

We summarize our contributions as follows.

• We describe a new attack primitive on confidential com-
puting systems, Relocate-Vote, that leverages management
commands supported by the confidential computing archi-
tecture to learn ciphertexts of prevalent values, enabling the
attacker to test for prevalent value matches on private pages
at a 16-byte granularity.

• We demonstrate the implications of revealing the cipher-
texts of prevalent values by demonstrating attacks that ex-
pose sensitive information by exploiting memory sparsity.

• We study the influence of Relocate-Vote on major cloud
service providers (CSPs) and propose potential countermea-
sures to mitigate these attacks.

Responsible Disclosure. We have responsibly disclosed our
findings to AMD on January 22, 2025. AMD has confirmed
the vulnerability and assigned a pending security brief, AMD-
SB-3021. AMD plans to release a feature update described
along with the security brief.

2 Background: Confidential Computing

Confidential computing employs hardware extensions to pro-
tect the state of sensitive virtual machines (VMs) from be-
ing directly accessed by the hypervisor on which the VMs
run. Specifically, confidential computing implementations
typically achieve this through a combination of encryption
and access control over read operations. For encryption, im-
plementations such as AMD SEV-SNP and Intel TDX use
AES-based encryption to encrypt CVM’s private memory, en-
crypting 16-byte plaintext into 16-byte ciphertexts. However,
the encryption is deterministic, generating the same ciphertext
for the same plaintext when the physical address is the same,
leading to a ciphertext side-channel [23, 25].

In terms of access control, AMD SEV-SNP originally did
not implement any access control to prevent the hypervisor
from accessing CVM memory. It was not until ABI spec-
ification version 1.55 (September 2023) that AMD intro-
duced a ciphertext-hiding guest policy. A guest policy is a
firmware-enforced configuration specified by the guest owner
during launch that restricts the hypervisor’s capabilities. The
ciphertext-hiding variant prevents hypervisor’s access to en-
crypted CVM memory via read access control. However, en-
abling this feature requires at least 5th-generation EPYC with
DDR-BF [11], an optional DDR5 feature, making it incom-
patible with the previous generations of EPYC processors.
Moreover, the ciphertext hiding policy must be specified by
the guest to make the enforcement take effect. As a result,
deploying this feature is non-trivial, as it requires specific
hardware components, configuration by the cloud provider
and enforcement by the CVM user. At the time of writing,
hypervisors can access memory ciphertexts on AMD SEV-
SNP confidential instances on major CSPs (AWS, Azure and
GCP). In contrast, Intel TDX enforces access control over
memory reads as a mandatory security measure, preventing
the hypervisor from accessing ciphertexts in CVM’s memory.

3 Attack Overview

Threat model. We assume the attacker controls a malicious
hypervisor on which the victim CVM executes. Although
the trusted hardware implementing confidential computing
prevents the attacker from directly accessing or modifying the

internal state of the CVM, the attacker can still read the cipher-
texts of the encrypted pages of the victim CVM and retains
the abilities provided by the hardware to manage resources
being used by the CVM. Specifically, the hypervisor can issue
page relocation commands, normally used to manage memory
resources. These commands—such as SNP_PAGE_MOVE and
SNP_PAGE_SWAP_OUT+SNP_PAGE_SWAP_IN in AMD SEV-
SNP—are executed by the trusted hardware, which ensures
permission checks and provides re-encryption during reloca-
tion. In addition, the attacker can manipulate the permission
bits in the host page tables that map guest physical addresses
to system’s physical pages to induce page faults in the guest
CVM. This technique [23, 25], known as controlled-channel
attacks [43], can be used to monitor the CVM’s page usage by
clearing permission bits on victim’s pages, forcing the victim
CVM to trigger permission violations when accessing these
pages. For example, the attacker can remove the W (write)
bit to trigger page faults due to write operations or remove P
(present) bit to monitor guest CVM’s page accesses. A mali-
cious hypervisor with AMD SEV-SNP with ciphertext-hiding
disabled is an instance of an attacker in our threat model.

3.1 Relocate-Vote
In this paper, we introduce a novel Relocate-Vote primitive
that exploits ciphertext frequency distributions to learn the
ciphertexts of prevalent values in a CVM page frame. This
primitive uses the previously mentioned page relocation com-
mands (Section 3), to relocate different CVM pages to the
same physical page, causing different pages to be encrypted
with the same key and tweak values (Figure 1). Thus, the
frequency of the ciphertexts on different pages in each en-
cryption block on the target page frame reflects the underlying
plaintext frequency. The attacker uses this to (a) learn the ci-
phertexts corresponding to the prevalent values for a single
physical page frame and then (b) extend this to recover the
ciphertexts of the prevalent values for all page frames.

Target
Page

Frame

Relocate To
Relocate BackCVM

Hypervisor

Figure 1: An attacker can arbitrarily relocate CVM pages onto
a designated target page frame. This frame is allocated by the
hypervisor and temporarily assigned to the CVM during each
relocation operation.

Throughout this paper, the prevalent value usually refers to
the most commonly occurring value in an application. How-
ever, in certain cases (which we will specify), it may also
refer to the second most common value or the top few most

common values. To learn such values, the attacker relocates
a collection of CVM pages to a target page frame to gather
ciphertext frequency distributions for each 16-byte encryption
block. This reveals the ciphertexts of prevalent values, which
can be of two types: (1) Global prevalent values are plaintexts
with the highest frequency throughout the system (e.g., usu-
ally zeros); (2) Local prevalent values occur frequently only
within specific regions of CVM memory (and are therefore
less frequent globally than global prevalent values), often re-
flecting application-specific semantics of NULL values, such
as the default background values in the OpenVDB exam-
ple discussed in Section 5.2. To infer ciphertexts of global
prevalent values, the attacker samples a subset of CVM pages
and computes the ciphertext frequency distribution for each
memory location. The most frequently occurring value will
correspond to the prevalent plaintext value. To learn cipher-
texts of local prevalent values, the attacker relocates faulting
pages identified via the controlled channel, thus isolating ap-
plication pages from other pages in the CVM.

The attacker can then extend their knowledge of the learned
prevalent values on the target page frames to the rest of mem-
ory by relocating other CVM pages to the target frame. The
location of the prevalent values on these other page frames
will thus be known, and the attacker can then relocate these
pages to arbitrary physical page frames to learn the corre-
sponding ciphertexts on those page frames as well.

The page relocation commands have two important proper-
ties for the purposes of our attack: (1) silent relocation, where
the hypervisor can arbitrarily relocate guest pages in a way
that is invisible to the guest (detailed in Appendix A); (2) non-
interrupting, where the CVM can continue executing while
the relocation occurs and thus have minimal performance
impact on the guest. However, since relocation temporarily
invalidates the mapping from the CVM’s page to its original
page frame, the CVM may block for a short period of time
if it happens to access the page that is being relocated. If the
CVM does not access any page while it is relocated, then
relocation does not affect the CVM’s execution.

3.2 Exploiting Sparsity

Distinguishing prevalent values enables attackers to recover
sparsity information from the victim CVM. This sparsity
arises from secret-dependent memory behavior in the victim,
where sensitive information influences how non-prevalent val-
ues are arranged in memory. This can occur in two ways: (1)
secret-dependent offsets (Figure 2a), where different secrets
cause the same data pattern to appear at different positions
within memory buffers, and (2) secret-dependent layouts (Fig-
ure 2b), where the secret determines the data population, re-
sulting in different spatial patterns of non-prevalent values
across the buffer.

Our attacks consist of two phases: an offline phase con-
ducted before the victim CVM’s execution and an online

Secret 1
(Offset 1)

Secret 2
(Offset 2)

(a) Offset shifts

Secret 1
(Pattern 1)

Secret 2
(Pattern 2)

(b) Layouts

Figure 2: Two forms of secret-dependent sparsity information
observed in memory: offset shifts and layouts. Prevalent val-
ues are in white. Non-prevalent values are in red.

phase that takes place during the victim CVM’s execution.
In the offline phase, we assume the attacker knows the vic-
tim applications running inside the CVM and analyzes their
behavior to understand how sparsity manifests in the appli-
cations. Through this, the attacker learns how to decode the
pattern of prevalent and non-prevalent values to extract sensi-
tive information from the application. In the online phase, the
attacker first learns the ciphertexts of prevalent values in the
CVM using Relocate-Vote, then monitors CVM’s execution
through controlled-channel attacks to locate pages containing
secret information and finally recovers the encoded secrets
by decoding the distribution of prevalent and non-prevalent
values. To highlight the core idea of the attack and simplify
implementation, our current attack prototype uses only a sin-
gle target page frame during the online phase. Upon receiving
a page fault via the controlled channel, the attacker immedi-
ately relocates the faulting page to this target frame, thereby
revealing the collision status of each encrypted block on the
faulting page. We discuss the performance implications on the
victim’s workloads and potential optimizations of this design
in Section 8.3.
Case studies. We demonstrate three proof-of-concept attacks
to show the breadth of scenarios to which Relocate-Vote can
be applied. First, we target Address Space Layout Randomiza-
tion (ASLR), a widely adopted software hardening technique
that randomizes symbol addresses. By leveraging sparsity
information in the CVM’s page tables, we are able to de-
randomize the base address of glibc. The offline phase in-
volves training classifiers to identify and extract secrets from
page tables of target services running in the victim CVM.
Second, we extract 3D object data processing with the Open-
VDB library, which is widely used in scientific computing,
simulations, and sensitive domains such as industrial design
and medical imaging [20]. The offline phase involves ana-
lyzing how the victim populates secret data during object
construction or accesses pages during data traversal. Success-
fully recovering such data reveals a serious vulnerability in
handling confidential assets such as medical imaging [20] and
industrial product prototypes [1]. Third, we exploit sparsity
leakage in LLM inference workloads that exhibit sparse acti-
vations. Although confidential computing aims to protect the
model, inputs, and intermediate states, token-level informa-

tion can be leaked through the activation patterns of ReLU
layers when LLM decodes prompt tokens. The offline phase
includes analyzing the behavior of the serving framework—
particularly ReLU activation signals—and training models to
infer token information from activation patterns.

4 De-randomizing ASLR on CVMs

In this section, we focus on de-randomizing ASLR protections
on applications running in CVMs. Unlike previous attacks
initiated by privileged software [43], which depend on victims
directly exposing their faulting virtual addresses, the hypervi-
sor in our attack only accesses guest physical addresses and
encrypted guest page tables. However, as the CVMs virtual
address layout affects the population of prevalent and non-
prevalent values in the guest page table pages, this still enables
the attacker to infer which memory regions are populated.

The data structure of page tables is sparse because the vir-
tual address space is significantly larger than the physical
memory, and a process typically utilizes only a subset of the
entire virtual address space. This sparsity results in virtual
memory regions being either unallocated in the virtual address
space or untranslated from a virtual address to a physical ad-
dress in the page table. We refer to such regions as unmapped
regions. Conversely, a region is considered a mapped region
if at least one page in that region is allocated and has a cor-
responding non-zero entry storing translation information on
the page table. At each level of the page table hierarchy—
PGD, PUD, PMD, and PTE (Appendix B)—empty entries
corresponding to unused and unmapped regions in the virtual
address space are represented as an 8-byte zero. During the
translation of a guest virtual address (GVA), the page walker
extracts a slice of the GVA, a specific range of bits in the
GVA (Table 1), to index the entries at each level of the page
table hierarchy. These entries point to the guest page of the
next level, as illustrated in Figure 3. Thus, the offsets of the
mapped regions are linked to the GVA slice value.

Table 1: The size of the region an entry and encryption block
represents in the page table page. The GVA slice bits are used
to index the entries in each page table level.

Page Table
Level

Page table
entry

Encryption
block

GVA slice bits

PGD 512 GiB 1 TiB 39-47
PUD 1 GiB 2 GiB 30-38
PMD 2 MiB 4 MiB 21-29
PTE 4 KiB 8 KiB 12-20

Figure 3 demonstrates how to decode the GVA from the
sparsity information in the page table pages. Using the primi-
tive described in the previous section, the attacker can detect
whether two adjacent mappings are empty within each 16-byte

PGD offset
(0xF8)

PUD offset
(0x32)

PMD offset
(0x1A3)

PTE offset
(0x14B)

Guest Virtual Address (GVA)

gCR3

1220212930383947

PGD offset
(0xF8 or
0xF9)

PUD offset
(0x32 or
0x33)

PMD offset
(0x1A2 or
0x1A3)

PTE offset
(0x14A or
0x14B)

GVA bit

PGD Page PUD Page PMD Page PTE Page

Figure 3: Page walk for translating a GVA and GVA slices
are leaked via offsets of pointer entries.

encryption block on the encrypted page table pages. Further-
more, if the attacker knows which non-zero blocks are indexed
by the GVA slice, they can use the offsets of the blocks to
recover the values of the GVA slices. If an encryption block
has an offset of n, its corresponding GVA slice is 2n or 2n+1
because one encryption block can accommodate two page
table entries. Thus, the intuition of the attack is to identify the
page table pages involved in translating a symbol within a li-
brary or code segment that the attacker aims to de-randomize.
By finding the non-zero encryption blocks indexed to find
the next-level page table and obtain their in-page offsets, the
attacker reconstructs the symbol’s possible GVAs. Ultimately,
this enables de-randomization of the base address of the code
or library containing the symbol.

We assume the attacker aims to determine the base ad-
dress of a victim application’s glibc library, a common target
due to its widespread use and rich set of functions that facili-
tate further exploitation, such as return-oriented programming
(ROP) attacks [8]. Furthermore, although the attacker cannot
execute any code inside the victim CVM [17], it can query
a service that invokes at least one glibc symbol, such as
accept for network function. This invoked symbol becomes
the target symbol. In the offline phase, in their own VM, the
attacker profiles the target applications and uses the profiled
data to train classifiers that can recognize candidate pages
for each page table level and that can infer the possible GVA
slices corresponding to the target symbol. In the online phase,
the attacker mounts a controlled-channel attack and leverages
the page table accesses during the page walk to resolve the
translation of the target symbol. By identifying candidate
page table pages and offsets, the attacker reconstructs possi-
ble GVAs for the target symbol and thereby de-randomizes
the base address of glibc. Our evaluation shows that on
average, this reduces the search space from 223 (8388608)
possible addresses to just 35–104 candidates on a set of pop-
ular long-running server applications. The reduction stems
from knowing exact offsets of non-zero encryption blocks in
each page table level (Figure 3). We note that the attack could

be made even more effective if false positives—non-page-
table pages mistakenly contributing possible offsets— could
be reduced, as these inflate the number of possible addresses.

4.1 Offline-Phase: Classifiers Preparation

The attacker prepares four classifiers—CPGD, CPUD, CPMD,
and CPTE—for each level of the page table during the offline
phase to identify page table pages and infer possible values
of the corresponding GVA slices in the online phase. These
classifiers are trained using attacker-controlled CVMs before
attacking the victim CVM by profiling how mapped regions
are accessed across different page table levels. Each classifier
takes as input a 256-bit bitmap representing whether each
16-byte encryption block on a page is zero or non-zero. The
training process leverages common global memory layout
conventions and the interleaving of mapped and unmapped
regions near the target symbol.

In a system, every process follows a standard layout for
its virtual address space, including text, heap, and stack seg-
ments, as well as user and kernel spaces. This relative po-
sition of each segment is constant across all processes and
ASLR simply modifies the relative offsets between segment,
which manifests as shifts in the non-zero encryption blocks
in the encrypted PGD pages, since each PGD page repre-
sents the mappings of the entire virtual address space. We
provide visualizations illustrating the consistent structure in
Appendix C. Since the high-level address space layout is con-
sistent across all applications, we train a single classifier CPGD
to identify PGD pages for any application. This classifier uses
a simple CNN [21] that performs binary classification on
256-dimensional inputs corresponding to the input bitmap.
The CNN consists of two convolutional layers with ReLU
activations and max-pooling, followed by a fully connected
layer and a single-neuron output for prediction.

If a page is identified as a PGD page, the attacker needs
to determine the encryption block that represents the mmap
region where the glibc library is mapped to produce the
possible values for the GVA slice of bits 39–47 (Table 1).
Typically, at least three distinct mapped regions exist in the
first half of the PGD page (Figure 4a): the text/heap segment,
the mmap region and the stack segment. The bits representing
the mmap region are the middle ones. In some cases, however,
only two distinct regions are represented in the first half of
the PGD page (Figure 4b). This occurs when the mmap region
is close to the other segments and becomes merged with them.
In this case, both relevant bit offsets in the first half of the
bitmap are used to generate possible values of the GVA slice.

In contrast to the PGD, the lower page table levels (PUD,
PMD, and PTE) describe increasingly smaller regions of the
virtual address space. Although ASLR randomizes the base
addresses of these segments, it does not alter the offsets be-
tween allocated and unallocated mappings within each seg-
ment. By exploiting these consistent offsets, the attacker con-

(a) At least three mapped re-
gions in the first half

(b) Only two mapped regions
in the first half

Figure 4: PGD pages: different mappings in the first half.

structs application-specific classifiers for each page table level
that can identify PUD, PMD, and PTE pages based on the
intra-segment pattern of mappings surrounding a target sym-
bol, which are robust to ASLR’s randomization. The attacker
accomplishes by profiling the application to obtain sequences
of binary bits, with each bit representing a region whose size
is determined by the information represented by an encryp-
tion block a the corresponding page table level, as specified
in Table 1 (e.g., 4 MiB at the PMD level). By examining the
pagemap in /proc, the attacker records whether each region
hosts at least one virtual to physical address translation (‘1’
for presence and ‘0’ for absence).

Recall that our primitive can recover a 256-bit bitmap of
allocated and unallocated regions for each page table page.
Due to ASLR, this sequence shifts within the address space.
A page whose 256-bit bitmap matches any subsequence of the
profiled sequences becomes a candidate for the correspond-
ing page table level. The offset of the bit that represents the
encryption block containing the target symbol is then used to
determine the values of the GVA slice. The bit correspond-
ing to the target symbol may shift across the 256-bit bitmap
of a page due to ASLR, necessitating an expansion of the
sampling range by 255 bits on each side of the central bit
representing the region encompassing the target symbol. This
creates a 511-bit fingerprint as exemplified in Figure 5, cap-
turing the mappings around the target symbol, where each
bit is linked to a memory region defined by the page table
level. The central bit denotes the region containing the target
symbol.

000100…00001111100…000000
256-bit
0…00001111100

256-bit

256-bit Page’s Bitmap

511-bit Fingerprint

Figure 5: A fingerprint and a majority bitmap matching it.

The attacker collects N fingerprints by repeatedly running
the target application, forming a fingerprint set. This prepares
for the online phase, where the attacker checks if the 256-
bit bitmap of a faulting page matches a subsequence of any
fingerprint for each faulting page. Matches identify candidate
pages, and the offset of the central bit provides possible values
of the GVA slices for the target symbol. For example, in

Figure 5, a matching offset 251 of the central bit in the 256-
bit majority bitmap corresponds to GVA slices 502 or 503.
By combining these slices across all page table levels, the
attacker can recover the full GVA of the target symbol. The
base address of the glibc library is then deduced from the
internal offset of the target symbol.

To evaluate whether N fingerprints sufficiently cover possi-
ble bitmap sequences, we use the Good-Turing estimator [34].
The probability of unseen patterns is given by Punseen =

N1
N ,

where N1 represents fingerprints observed only once, and N is
the total number of observations. A large Punseen suggests the
probability of encountering an unseen sequence during the
online attack is high, potentially failing to produce the correct
possible GVAs by missing matches with the actual page table
pages. Thus, the attacker must sample more fingerprints un-
til Punseen is lower than an empirically pre-defined threshold.
To expedite this process, the attacker can benefit from par-
allel collection by deploying multiple fingerprint-generation
machines simultaneously. In our experiment, collecting finger-
prints with Punseen achieving lower than 1% for all evaluated
applications takes around one day.

4.2 ASLR Online-Phase Attack Flow

After building the classifiers for each page table level, the
attacker performs the online-phase of the attack, leaking the
target symbol’s GVA by triggering access to the target symbol,
thus de-randomizing the base address of the glibc library.
Since the empty entries are represented by zero (i.e., a global
prevalent value), the corresponding ciphertexts can be learned
via random sampling from CVM’s pages and collecting ci-
phertext frequency information as described in Section 3.1.
After learning the prevalent value ciphertexts, the attacker can
distinguish the zeros and non-zero encryption blocks for each
page in the victim CVM. With this capability, the attacker
tracks all pages in the CVM, which is achieved by clearing the
W (write) bit in the host page table for all guest pages to en-
force write protection. The page walk in the CVM will violate
page write protection, as the hardware will try to set the access
bit in the guest page table entries (detailed in Appendix B).
The attacker then queries the service that accesses the target
symbol, causing a series of page faults. For each page fault,
the attacker records the guest page frame and produces its
256-bit bitmap by relocating it to the target page frame with
known ciphertexts of the prevalent values and lifts the write
protection on the page by setting the W bit to allow the CVM
to continue execution. The tracking ends when the service
completes the query. Since responding to the query requires
resolving the target symbol’s translation, the page table pages
involved also get recorded in the page-fault events.

Page-faults can occur on both page table pages and non-
page table pages. To distinguish between them, the attacker
uses the classifiers derived from the offline phase to determine
whether a page-fault corresponds to a page table page, and

if so, identify the specific level of the page table that was
accessed (e.g., PUD, PMD, or PTE). The attacker then iden-
tifies all valid quadruples, Q(A,B,C,D), in the sequence of
faulting pages, forming a set SQ: each quadruple Q(A,B,C,D)
satisfies the condition that A, B, C, and D occur in order and
correspond to PGD, PUD, PMD, and PTE candidates, and
also produces possible GVAs by combining the possible GVA
slices. The pages forming SQ produce a set of candidates,
Sc. This process represents one iteration of tracking. The at-
tacker can perform multiple iterations to obtain several sets of
quadruples SQ and candidate pages Sc. By intersecting these
sets and the possible GVAs across iterations, the attacker re-
duces the sizes of the sets and the possible GVAs, as the ASLR
offset is not changed as long as the process is not restarted.

If intersecting the sets cannot further reduce the size of
the sets, the attacker can opt in a more fine-grained approach
we call windowed tracking. In windowed tracking, a window
size w is defined, where each window contains w page-fault
events. At the beginning of each window, the attacker clears
the W bit for pages in Sc that faulted in the previous window,
thereby bringing them back to the tracking set—the set of
pages currently being monitored for write activity via induced
page faults. This approach guarantees that the target symbol’s
translation is resolved within a single window: if the target
symbol is accessed and a page walk is required, the pages
involved in its translation must appear within the same win-
dow to access the symbol. The attacker identifies quadruples
within each window and intersects them with the original SQ,
further refining the set of possible GVAs.

4.3 ASLR Leakage Results

For evaluation, we use nginx [32], Apache [16], MySQL [33],
Redis [36], and Memcached [27], which provide long-running
network and data management services. The victim CVM
runs Ubuntu 24.04.1 LTS with one core and 4 GiB of memory.
Offline-phase: CNN-based classifier for PGD. The training
set for the PGD classifiers comprises 568 PGD pages and
410481 non-PGD pages with multiple reboots. Considering
the significant class imbalance between PGD and non-PGD
pages, SMOTE [15] is employed to generate synthetic sam-
ples for PGD pages. The trained classifier successfully classi-
fies 102613 non-PGD pages and 142 PGD pages in the test
set, with 8 non-PGD pages identified as PGD pages.
Offline-phase: Fingerprint-based classifiers for other lev-
els. We collected N = 150000 fingerprints per page table level
for each application, using 50 attacker-launched fingerprint-
generation CVMs (each with 1 core and 4 GiB memory).
Each CVM completed fingerprint collection in 23.75±2.41
hours on average. We then applied the Good-Turing estimator
on 1%, 5%, and 50% of the fingerprints as the sample set to
predict the coverage, defined as the proportion of fingerprints
in the remaining dataset also appearing in the sample set.
The predicted coverage is computed as 1− N1

N described in

Section 4.1. The results demonstrate that the Good-Turing
estimator accurately predicts coverage for each page table
level and each application in each sample set (detailed in Ap-
pendix D). We selected the 50% sample set of the 150000
fingerprints, as it achieves over 99% coverage in all applica-
tions and page table levels, indicating the comprehensiveness
of the fingerprint collection.
Online-phase attacks. We conducted online-phase attacks
on the victim CVM. The tracking iterations were terminated
when the number of possible GVAs for the glibc base ad-
dress did not decrease over five consecutive iterations. We
run both non-windowed tracking (non-WT) and windowed
tracking (WT) with window sizes of 128 and 64. We repeat
the attack 10 times with 10 random memory layouts for each
application.

Table 2: Online ASLR attack results: ASR and Average num-
ber of possible GVAs / Average number of page-fault events.

Application ASR Non-WT
WT

(w = 128)
WT

(w = 64)

nginx 10/10 321/1988 106/2565 104/2840
apache 10/10 214/1954 74/2315 62/2706
mysql 9/10 264/3139 54/3473 52/3975
redis 10/10 58/1916 38/2288 35/2643
memcached 10/10 75/1841 48/2355 41/2656

Table 2 includes the attack success rate (ASR), defined as
the proportion of runs where the actual GVA of the glibc
base is included in the set of possible GVAs derived from
tracking, the number of possible GVAs for the glibc base
address at termination, and the average number of page-fault
events triggered per iteration. The results demonstrate that
our attack achieves a high success rate, failing only once
to generate the potential base address of glibc in MySQL.
The evaluation system features 223 (8388608) possible ad-
dresses for the glibc base, with entropy derived from 5 bits
in the PGD page, 9 bits in the PUD page, and 9 bits in the
PMD page. However, the evaluation system has no entropy
at the PTE page level, as the glibc base address aligns with
a 2 MiB boundary. The results demonstrate that the set of
possible GVAs can be reduced to 35–104, depending on the
application, representing a significant reduction.

5 OpenVDB Leakage

OpenVDB [30] is a library designed for managing sparse
volumetric data, enabling efficient representation and ma-
nipulation of three-dimensional grids with attributes such
as distance and density. OpenVDB employs voxels, which
represent points in 3D space, analogous to pixels in 2D space.
To efficiently store and manage sparse data for 3D objects,
OpenVDB stores voxels in a hierarchical tree structure with
multiple levels of nodes.

In OpenVDB, the default background value is used to fill
node buffers during initialization. As a result, it becomes the
prevalent value, creating sparsity patterns when interleaved
with non-background values, including pointers to child nodes
and actual voxel data. In this section, we show how an attacker
correlates the fundamental operations of the construction and
the traversal process with the underlying tree structure. Since
the tree structure reflects the spatial distribution of voxels,
which is sensitive, the attacker can reconstruct the shape of
3D objects by analyzing the interleaving of background and
non-background values in node buffers.

5.1 Offline-Phase Application Analysis

The OpenVDB tree structure consists of a root node, multiple
internal layers, and a leaf layer. The root node represents
the entire 3D space and creates child nodes only for regions
with actual data. Internal nodes recursively subdivide the
regions their parent represents into smaller regions, forming
a hierarchical structure. Leaf nodes store the voxel data. The
tree elements correspond to coordinates in 3D space. The root
node uses a map data structure to directly map coordinates
to child node pointers. Internal and leaf nodes use fixed-size
arrays, determined by the layer, to store pointers to child nodes
or values. The index of an element in the array corresponds
to the local 3D coordinates of a subregion within the space
covered by the node, providing a mapping between a 1D offset
and 3D coordinate information.
Object construction. An OpenVDB object is constructed by
incrementally adding voxels into the 3D space. Initially, the
tree is empty, consisting only of a root node with no entries
but containing a specified background value for the object.
When a voxel is added, internal and leaf nodes are lazily cre-
ated as necessary to store the voxel data. Lazy appending
of child nodes involves two key steps, as shown in Figure 6:
node initialization and non-background value insertion. The
node creation involves filling the buffer with the background
value. A child node must be created after its parent node;
after the child node buffer is initialized, the corresponding
element in its buffer is updated to point to this new child node.
The buffer offset updated in the parent node is determined
by the relative 3D coordinates of the child node, indicating
where the active subregion is added. As voxels are inserted,
the buffers in internal and leaf nodes become populated with
interleaved background and non-background values, main-
taining spatial information through offsets corresponding to
relative 3D coordinates of the regions they represent.
Object data traversal. OpenVDB also provides native itera-
tors that perform depth-first-search (DFS) traversal to process
object data. As illustrated in Figure 7, the iterator sequentially
accesses entries in a parent buffer and descends into a child
node whenever an entry points to one. Unlike object construc-
tion, where voxels are inserted into the tree in arbitrary order,
such iterator proceeds in a deterministic order. For example,

Buffer
Page 0

B B
B B
B B
B

B

B
B
B

B B B

B
B B B
B B
B B
B

B

B
B
B

B B B

B

Buffer
Page 1

…

…

Buffer
Page N

B B B
B B
B B
B

B

B
B
B

B B B

B

Parent Node Buffer

B B
B B
B B
B

B

B
B
B

B B B

B

Child Node Buffer
…

…

B B B
B B
B B
B

B

B
B
B

B B B

Page Access
Sequence

Figure 6: Buffer initialization and parent-child link.

the iterator visits the first child of a node before moving to
the second, implicitly revealing parent-child relationships. An
attacker exploits this behavior by leveraging (1) the ability to
distinguish background values using our primitive to reveal
buffer contents, and (2) the ordering of page faults, which
reflects the access sequence of nodes during traversal. The
attacker combines this information to recover the positions of
the voxels in 3D space.

Parent Node
Buffer
Page 0

B B
B B
B B
B

B
B
B

B B B

B

B B
B B
B B
B

B

B
B
B

B B B

B

Child Node
Buffer 1

B B B
B B
B B
B

B
B
B

B B B

B

Child Node
Buffer 2

…

…

Figure 7: Tree traversal in OpenVDB.

5.2 Online-phase Tracking
Learning ciphertexts of the background value. In both
object construction and traversal, the background value asso-
ciated with the object becomes the local prevalent value. Its
ciphertexts remain learnable even when the background value
is non-zero. First, they can be leaked from earlier processing
of objects with the same background value, even if the ob-
jects are different and stored at different memory locations,
by leveraging memory snapshots from prior processing and
using the Relocate-Vote primitive to inspect their re-encrypted
contents on the target page frame. Second, since a tree struc-
ture often spans many pages filled predominantly with the
same background value, the attacker can exploit ciphertext
frequency of the background value across multiple pages
within the same object during a single execution to infer the
corresponding ciphertexts on the target page frame.
Tracking during object construction. The attack relies on
detecting events corresponding to two key operations during
online tracking of object construction: (1) node initialization,
where buffers are filled with the background value, and (2) in-
sertion of non-background values. Unlike the ASLR scenario,
where pages containing secret information remain unchanged

before and after tracking, this tracking requires observing
multiple versions of values on the same pages, as illustrated
in Figure 6. First, the attacker monitors dynamically allo-
cated buffers during node initialization. Second, for a page
containing an internal node buffer, the attacker must track
intermediate updates after initialization, as any overwrite of a
background value indicates the insertion of a child node.

We implemented a fine-grained tracking method allowing
the attacker to observe intermediate memory updates while
still allowing the victim CVM to make forward progress. This
method begins by tracking all guest pages by clearing the W
(Write) bit in the host page table entries, enabling the obser-
vation of ciphertext changes caused by writes. Specifically,
it captures the memory state resulting from the last write to
the page that triggers a fault and any updates made to that
page before a subsequent page fault occurs on a different
page. For each faulting page, the attacker relocates it on the
fly to the target page frame and identifies ciphertexts matching
those associated with the background value. The range of the
identified blocks reveals the region initialized with that value.
Upon detecting a buffer initialization, the attacker records the
pages involved and the range of background values within
each page. It then adds the page back to the tracking set after
w page faults have been triggered by other pages to capture
further updates. Later, a page fault in the parent node’s buffer
is triggered when a child node is added. By observing the
update, the attacker links the newly created child node to the
corresponding element in the parent node, thereby forming
an edge in the tree structure.

For tracking efficiency, the attacker can progressively elim-
inate pages not initialized with node buffers from the tracking
set. Each guest page maintains two separate counters: Tactive
and Tsilent, tracking active and silent write events, respectively.
An active write refers to a page fault that results in a memory
content update, while a silent write does not change the con-
tents. If either counter reaches its threshold and the page has
not exhibited any node buffer initialization, it is permanently
removed from the tracking set and no longer triggers page
faults. The Tsilent counter accounts for frequent writes that
repeat previously stored values. In contrast, Tactive is intended
to filter out pages that undergo frequent updates inconsistent
with node buffer behavior.
Tracking during object traversal. As an alternative, the at-
tacker can also attack OpenVDB after the tree structure and
data have already been populated in memory. Therefore, un-
like during object construction, the attacker does not need to
track intermediate states caused by write operations. How-
ever, since multiple buffers may reside on the same page,
the attacker must still monitor repeated page faults on those
pages as different buffers are accessed. Assuming the traver-
sal is read-only, the attacker begins by clearing the P (Present)
bits in the host page table entries to trigger page faults on
CVM’s page accessing events. Upon encountering a fault
of a new page, the attacker relocates it to the target page

frame and records its ciphertexts. If the page contains back-
ground values—indicated by memory blocks matching the
corresponding ciphertexts—it is added to the tracking set to
be revisited on subsequent faults triggered by co-located node
buffers. The tree structure corresponding to the processed ob-
ject can then be recovered by analyzing the sequence of page
faults in conjunction with the sparsity information embedded
in the node buffers.

5.3 Object Recovery
Once the tree structure is reconstructed in the online phase,
the attacker extracts active regions in the 3D space, begin-
ning with the leaf buffers. Non-background values in the leaf
buffers represent the relative 3D coordinates of active voxels.
These offsets are mapped to coordinates using the library’s
intrinsic mapping method, revealing the distribution of active
voxels within the 3D block the leaf buffer represents. When
a leaf buffer is linked to an element in an internal node (its
parent), the relative coordinates within the block covered by
the parent node are inferred based on the offset of the corre-
sponding element in the parent buffer. This recursive process
propagates spatial information up the hierarchy through the
internal nodes until the top-level internal layer is reached. By
traversing this hierarchy, the attacker reconstructs the spatial
distribution of voxels in the 3D object. However, the attacker
faces challenges with the map-based data structure of the
root node, which uses key-value pairs to map 3D coordinates
to subregion pointers. In our experiment, these pieces can
be assembled manually, which is feasible because each root
node corresponds to a large, box-shaped subregion of the 3D
space, resulting in only a small number of distinct compo-
nents. These subregions have clearly defined boundaries as
flat faces and right angles that naturally suggest how they align
with neighboring regions. Moreover, when adjacent blocks
are placed together, the continuity and smoothness of the un-
derlying surface geometry across block boundaries serve as
visual cues for correct alignment.

5.4 OpenVDB Leakage Results
To demonstrate the extraction of sensitive objects, we simu-
late (1) construction: converting DICOM format data—widely
used standard in medical imaging for storing and transmitting
data, including image slices and associated metadata—into an
OpenVDB object and extracting the object under construction
during this process, and (2) traversal: a read-only traverse
with the native iterator cbeginValueAll. We use the first
scan, CQ500CT0/CT Plain, from the CQ500 dataset [35]—a
publicly accessible collection of 491 anonymized head CT
scans curated for medical imaging research. This scan com-
prises 30 slices in DICOM format.

To simulate the construction operation, we apply a thresh-
old of 20 to the slices’ values, a common medical imaging

technique to isolate specific tissues or structures [4]. The
filtered voxel data is inserted into an OpenVDB grid, specif-
ically a default FloatGrid, which consists of a 4-layer tree
with two internal layers (Internal-1 and Internal-2), uses float
as the data type, and has a background value of -1000 to rep-
resent air. For traversal, we simulate a victim CVM traversing
the constructed grid using the code in Listing 1, a minimal yet
representative style for examining values across the grid, intro-
ducing two challenges: (1) the constant iterator performs no
writes, and (2) voxel values do not affect access patterns when
processing each of them. Still, such exploitation generalizes
to more complex processing scenarios.

Listing 1: Tree traversal with DFS-style iterator
1 for (auto iter = tree().cbeginValueAll(); iter; ++iter) {
2 float value = iter.getValue(); // Processing not voxel-dependent
3 } // Processing code omitted

Table 3: Node discovery information (construction, traversal).

Internal 1
Found / # Total

Internal 2
Found / # Total

Leaf
Found / # Total

8/8, 8/8 8/8, 8/8 4576/4626, 4616/4626

The source object is illustrated in Figure 8a, consisting of
71349 active voxels spanning on 3045 pages. We run each
type of tracking three times and take the average value to
report as shown in Table 3, including the number of discov-
ered node buffers during the trackings. For tracking the con-
struction, we set w = 8, Tactive = 128, and Tsilent = 1024. On
average, the active threshold Tactive caused one buffer page to
be prematurely removed, as it reached the threshold before
its initialization was observed. The silent threshold Tsilent led
to an average of 14 such removals. In the traversal scenario,
a subset of node buffers was missed due to access patterns
being masked by co-located buffers on the same page. Each
attack instance generates 1522035 page-fault events for con-
struction and 48547 page-fault events for object data traversal
on average. The significant reduction in page faults in the
traversal scenario is attributable to the fact that tracking inter-
mediate updates for potential buffer allocation is unnecessary.
The number of page faults is even smaller than the number
of voxels because of the primitive’s ability to directly ex-
tract value-based information from static memory snapshots
containing populated secrets. Since each page leaks multiple
secret values, the extraction cost is effectively amortized.

The extracted object is visualized in Figure 8b and 8c, after
manually assembling the eight pieces derived from the online
phase, as described in Section 5.3. The visualization is based
on the worst-case tracking scenario, where the largest number
of pages containing node buffers were missed, demonstrating
that the attacker can still infer the structural information of
the object. Although most tree nodes are successfully discov-
ered, some inaccuracy arises due to the 16-byte encryption

granularity, as each encryption block may span multiple ele-
ments (e.g., two pointers or four floating-point numbers). To
simplify handling this inaccuracy, for non-background values
in leaf nodes, we populate only the first voxel represented by
each non-background encryption block. For internal nodes,
which store parent-child relationships as pointers, we adopt
different strategies based on the extraction scenario. During
construction-based extraction, if one child is present, we as-
sign it to the first entry; if two children are detected within the
same block, we randomly assign parent-child relationships,
since the ordering of pointers within an encryption block is
non-deterministic. In traversal-based extraction, the order of
children can be inferred from the sequence of accesses to the
child nodes. However, missing a child node may still disrupt
the insertion of subsequent children sharing the same parent
buffer page. Despite these inaccuracies, our measurement of
the distribution of nearest-neighbor distances between source
and recovered voxels (Figure 9) shows a clear advantage over
randomly populated points within the same bounding box.
This shows that the attacker can recover high-quality approxi-
mations of the protected data in the CVM.

(a) Source (b) Construction (c) Traversal

Figure 8: Extract 3D object constructed from CT scanning.
Color is not recovered, only added for better visualization.

Source-
Construction

Source-
Traversal

Source-
Random

0
1
2
3
4
5

N
ea

re
st

-P
oi

nt
D

is
ta

n
ce

Figure 9: Distributions of nearest-neighbor distances from
source voxels to recovered and randomly populated points.

6 Sparse LLM Leakage via ReLU Activation

Recent works in LLM inference focus on reducing the mem-
ory and computational requirements by leveraging sparsity in
neuron activations [26,29,38], specifically in the self-attention
and multi-layer perceptron (MLP) layers. For example, re-
searchers at Apple [29] proposed architectural modifications
to Llama by replacing its SiLU [13] gating function in its feed-
forward network—defined as SiLU(x) = x ·σ(x) = x

1+e−x)—
with ReLU. This line of work has led to the development of

artifact models like ReLULlama [39], a set of Llama-2-based
models utilizing ReLU activation.

Our attack exploits sparsity information leaked by ReLU
activations during sparse LLM inference. During inference,
both user-provided prompt tokens and auto-regressively gen-
erated tokens are processed by the decoding function, which
performs a forward pass through all model layers, each con-
taining a feed-forward network with ReLU activations. ReLU
generates input-dependent patterns of interleaving zero and
positive values and can reveal information about the processed
tokens. To exploit this leakage, the attacker trains an activa-
tion probe during the offline phase—a lightweight model de-
signed to perform prediction or classification—based on the
model’s internal state. This approach is inspired by prior work
on probing classifiers, which use internal representations to in-
fer external properties [3,7,18]. However, unlike these works,
our attacker observes (1) the ReLU activation information
instead of the layer’s output (i.e., the hidden states, see Fig-
ure 10) and (2) only limited information (i.e., the knowledge
of zero ciphertexts at the granularity of encryption). Thus, the
attacker can only observe blurred activation information: they
can determine only whether at least one activation within a
16-byte block (encryption granularity) is non-zero.

We demonstrate a scenario where the attacker aims to
learn the geographic coordinates of the LLM inputs [18]—
specifically latitude and longitude—based on blurred acti-
vation information obtained when the victim processes the
user’s prompt. Specifically, we assume the victim processes
a prompt in a victim CVM with the format: “What are the
lat/lon coordinates of <place_name>”. The attacker trains a
probe model in the offline phase and measures the activation
information of the last token in the user input to feed into the
probe in the online phase. Our results show that, even with
blurred visibility, the attacker can infer the geographic coor-
dinates with performance comparable to scenarios where full
hidden states are available in the original non-sparse model.

Gate Proj Up Proj

ReLU

×

Down Proj

+

 Attacker in our work

Residual
 Related works [18]

Figure 10: The attacker targets the ReLU’s buffer.

6.1 ReLU Activation Signals
We studied the PowerInfer [38] serving framework, which
is based on llama.cpp and supports sparse LLM inference.
The implementation optimizes memory efficiency and utilizes
in-place ReLU operations, overwriting the output of the pre-
ceding operator by zeroing out negative values. Element-wise

multiplication is performed in place within the same buffer
after ReLU activation and is expected to update only non-zero
blocks. However, due to hardware or compiler implementa-
tion, zero elements sometimes produce negative zeros during
multiplication. Knowledge of the ciphertexts corresponding
to positive zeros as a global prevalent value helps the attacker
identify ReLU activation buffers and their activation results.
Additionally, it enables the attacker to disambiguate behaviors
across two operations: In ReLU activation, a block may re-
main unchanged because it contains either all positive values
or all zeros; in multiplication, a block may be updated because
it contains either at least one positive value or a zero that is
converted into a negative zero. Identifying encryption blocks
filled with all positive zeros allows the attacker to distinguish
these cases more precisely, beyond relying solely on cipher-
text collisions with previously observed ciphertexts [44].

When processing a prompt, the sequence of N input to-
kens is decoded as a batch. In each layer’s ReLU operator
in the feed-forward network, each token is associated with a
d-element vector, forming an N ×d-element buffer laid out
contiguously in memory. The value of d is model-specific,
e.g., in ReLULlama2-13b, d = 13824.

6.2 Leveraging ReLU Activation Information

We assume that the elements in the ReLU activation
buffer are float32. We demonstrate the attack with the
ReLULlama2-13b model, with a 13824-dimensional ReLU
vector in each layer. We use the experiment from prior
work [18] to demonstrate the ability to extract useful informa-
tion from blurred activation information. In this study, they
use prompts ending with place names as input and collect
hidden states (layer output) for each model layer on the last
token. They then train linear regression probes for each layer
on the collected hidden states to predict the corresponding
latitude and longitude, using a dataset of 39585 place-name
entities to form prompts. 20% of the data was held out as a
test set, while the remaining 80% was used for training with
Leave-One-Out Cross-Validation (LOOCV) [19] to select
probe parameters. Their results show that spatial information
is linearly decodable in the tested models, with high R2 across
layers and various prompts.

In our attack, instead of collecting the hidden states, we col-
lected the activation information from the dataset consisting
of 39585 prompts from running the PowerInfer framework,
where each prompt was processed to extract ReLU activa-
tion results at each layer for the last token. The activations
were transformed into a 3456-dimensional binary vector by
grouping every four elements into a single bit to simulate
the attacker’s visibility: 0 if all were zero, and 1 otherwise. A
linear regression probe was trained on this data with a training
set of size 31668, and evaluated on 7917 test prompts, sim-
ulating victim-side inference of processing prompts formed

with the place-name entities in the test set on a CVM.
Results. The probe’s performance on the test data is in Fig-
ure 11, including the R2 and the proximity error. The prox-
imity error is defined in the original work and quantifies the
proportion of entities predicted to be closer to the target than
the predicted point. This metric, ranging from 0 to 1 with
a random performance of 0.5, measures the relative spatial
accuracy of the predictions. The original work reports the
R2 and the proximity error at the 60% layer depth as 0.896
and 0.068, and our variant yields 0.80 and 0.13. The results
demonstrate that even with blurred activation information,
the attacker achieves a high correlation and a low proximity
error, highlighting its utility. Figure 12 visualizes the pre-
dicted coordinates at the 60% layer-depth and their actual
continent, illustrating that continent-level spatial information
is well-preserved.

Figure 11: R2 and the proximity error in each layer.

Figure 12: Predicted coordinates of the places in the test set
with the attack’s blurred information.

7 Implementation

We implement our attack on a 3rd-generation AMD EPYC
7543 with the SEV-SNP firmware version 1.55.21.

7.1 Relocate-Vote Implementation
We implemented Relocate-Vote as a procedure in the at-
tacker’s kernel including the following modifications.
Implementing SNP_PAGE_MOVE. We added kernel func-
tions for the hypervisor to request SNP_PAGE_MOVE as it has

not been officially implemented in AMD’s Linux kernel fork
yet [6]. Our implementation follows the official ABI specifica-
tion: The source page of relocation should be immutable, and
the CVM should own the target page [2]. These requirements
cause two rmpupdate requests for updating the page’s meta-
data stored in the RMP table [2] maintained by the hardware.
SNP_PAGE_MOVE is then called to request re-encryption of the
contents in the target page while invalidating the source page.
Recovering kernel’s map of guest private pages. We al-
locate the target page and move pages to it to collect re-
encrypted ciphertexts. By default, the kernel mappings to
CVM are removed once they are assigned to a CVM. We
modify the kernel to retain such mappings so that our mali-
cious hypervisor can maintain access to guest CVM pages.
Host cache coherence on guest private pages. When the
hypervisor reads guest CVM’s private pages, it brings the
corresponding cache lines into the cache. However, during
hardware-initiated page relocation onto the same page frame,
these cache lines belonging to the hypervisor are not inval-
idated. Consequently, the hypervisor may access stale data
from the cache. To avoid this, the hypervisor issues clflush
instructions on the frame region of the target page before
re-accessing it.

After the preparation above, we implement Relocate-Vote
(Figure 1). The hypervisor first allocates a target page frame,
enabling iterative relocation of victim pages to this frame.
In each iteration, a page is relocated to the target frame, its
ciphertext is collected after re-encryption, and the page is then
moved back to its original frame. This process—consisting
of two relocations, a page flush, and ciphertext recording—
takes 2.02 milliseconds on systems running firmware version
1.55.20 or later, where AMD addressed performance issues
in the SNP_PAGE_MOVE implementation.

7.2 Implementation of Online Attacks

Implementation of ciphertext learning. We implement ci-
phertext learning of global prevalent values (i.e., zeros) by
randomly sampling private pages from the CVM and relo-
cating them to a designated target page frame. Specifically,
we relocate 4096 private pages (taking approximately 8 sec-
onds) out of every 1 million, demonstrating that even a small
subset of pages can be used to reliably recover the global
prevalent values from the ciphertext frequency distribution.
We record the most frequent ciphertexts observed for each
encryption block for the target page frame, enabling the col-
lision status test by comparing against them. As part of our
proof-of-concept to validate correctness of learned cipher-
texts, we have the victim CVM populate a page with zeros,
relocate it to the target page frame, and check if the resulting
ciphertexts match the learned ciphertexts. For local prevalent
values (e.g., the background value in the OpenVDB scenario),
we assume that an object using the same background value
was processed earlier at different memory locations, leaving

Table 4: Comparison of the capabilities of the hypervisor in different confidential computing platforms.

Platform Address-based
tweak Relocation Controlled Channels Ciphertext access

from hypervisor

AMD SEV-SNP Yes
SNP_PAGE_MOVE

SNP_PAGE_SWAP_IN/OUT
Directly manipulable
from host page table

No when ciphertext-hiding enabled
(5th-generation or later EPYC with

DDR-BF mode required)

Intel TDX Yes TDH.MEM.PAGE.RELOCATE
TDH.MEM.RANGE.BLOCK
TDH.EXPORT.BLOCKW

No

ARM CCA Yes No No No

its pages populated in memory. This enables the attacker to
relocate those previously accessed pages and learn the cor-
responding ciphertexts via frequency. This reflects the core
idea of the primitive that analyzes ciphertext frequency across
pages. As described in Section 5.2, the attacker can also infer
frequency information through ciphertext collisions among
pages of a single object during tracking, which we leave as
future work.
Implementation of exploits. The development of our ex-
ploits is based on the SEV-Step framework [42] on Linux
5.19 to utilize its functionality of sending page fault events
from the kernel space to the userspace. The framework imple-
ments a kernel space part based on the KVM kernel module
for a malicious hypervisor and a user space part. The ker-
nel space component modifies the ioctl interface provided
by the kvm device to support additional commands, such as
tracking all pages requested from the user space to mount
the controlled-channel attacks. When a page fault occurs, the
kernel space sends the information about this event such as
the faulting GPA to the user space component. The user-space
component acknowledges the event, allowing the CVM to
resume execution. We extend the framework to include the
contents of faulting pages when sending page fault events.
Each faulting page is relocated to the target page frame to
capture its re-encrypted contents, which are then compared
against the ciphertexts of prevalent values. This comparison
yields a bitmap of 256 bits, indicating which blocks match the
prevalent values. If a page triggers a subsequent page fault,
we also compare its new ciphertexts with the previous version
to identify which encryption blocks have been updated.

8 Discussion

8.1 Confidential Computing Platforms

Table 4 compares the hypervisors’ capabilities across differ-
ent confidential computing platforms in relation to our attack
primitives. AMD SEV-SNP allows ciphertext access to the hy-
pervisor in 4th generation or older EPYC processors and only
enables ciphertext hiding in 5th generation or newer EPYC
processors with DDR-BF mode enabled DRAM [9,11,12,23].

Moreover, ciphertext hiding is an opt-in policy for guest
CVMs, which creates opportunities for misconfiguration, as
CVM owners may not enforce it correctly or at all. SEV-SNP
also allows the hypervisor to directly manipulate permission
bits in the host page table, enabling controlled-channel at-
tacks, and its page relocation mechanism remains exploitable
at the time of writing. In contrast, Intel TDX enforces cipher-
text access control on memory reads (Section 2) and prevents
the hypervisor from manipulating page table permission bits,
instead delegating these abilities to its secure runtime [24].
However, it exposes resource management commands such
as TDH.EXPORT.BLOCKW and TDH.MEM.RANGE.BLOCK that a
malicious hypervisor can misuse to simulate the effects of
W or P bit clearing [37, 41]. This design still permits future
firmware patches to restrict these interfaces due to its dele-
gation model. TDX also supports page relocation for mem-
ory management, using TDH.MEM.PAGE.RELOCATE, similar
to SNP_PAGE_MOVE in SEV-SNP. ARM CCA adopts stricter
limits on hypervisor’s control over guest resources. To our
knowledge, we are unaware of comparable mechanisms to
enable controlled-channel attacks or relocation primitives.

Confidential computing platforms in Table 4 encrypt mem-
ory using address-based tweaks [23]. Even if they restrict
the hypervisor’s access to ciphertexts via access control, re-
cent works [23, 45] hypothesized that ciphertext side-channel
attacks remain feasible through off-chip bus snooping [22],
which gives the ability to read ciphertexts back to the adver-
sary. We argue that the relocation primitive also amplifies
such attacks. While traditional bus snooping captures only
data-in-motion [14] during memory transactions, relocation
actively exposes data-at-rest without the victim CVM’s ac-
cessing memory. By forcibly relocating idle pages, the at-
tacker can trigger re-encryption and force cache eviction, en-
suring the ciphertexts are written back to DRAM and thus
exposed on the bus.

8.2 Mitigation

Hardware implementation: Hardware vendors implement-
ing confidential computing can mitigate issues caused by
arbitrary page relocation by restricting the hypervisor’s abil-

ity to perform such operations—for example, by disabling
related management commands. This mitigation is expected
to be backward-compatible, as it operates at the hypervisor
management interface level by introducing additional checks
before executing these commands. It mitigates attacks en-
abled by our primitive, even when ciphertext collisions do not
occur at the same memory locations. However, it impacts the
hypervisor’s ability to manage resources. In particular, it pre-
vents the hypervisor from moving pages for de-fragmentation
and swapping pages to disk to reclaim memory, and does not
address prior ciphertext side-channel attacks [23, 44].
Cloud service providers (CSPs) and tenants: The guest
CVM should enforce the ciphertext-hiding guest policy. How-
ever, its enforcement requires specific hardware support (Sec-
tion 8.1), which limits the availability of such instances. We
surveyed the major CSPs: Microsoft Azure, AWS, and GCP,
to ascertain whether their deployments of SEV-SNP restrict
the hypervisor from accessing encrypted memory. At the time
of writing, AWS confidential computing instances (c6a, m6a,
and r6a) are provisioned with 3rd generation EPYCs, mak-
ing it impossible to enable ciphertext-hiding due to unmet
hardware requirement as specified in Table 4. Azure and GCP
provision a mix of 3rd and 4th-generation EPYCs. However,
the attestation report shows that ciphertext-hiding is not en-
abled on any of the instances for similar hardware constraints
with AWS. In addition, GCP’s 4th-generation EPYC plat-
forms lack SNP support. At the time of writing, major CSPs
do not support ciphertext-hiding and provide no interface for
clients to request this protection through specifying corre-
sponding guest policy, leaving them reliant on the platform’s
default configuration. We have also reported our primitive
and the associated issue to the affected CSPs. In the future,
CSPs should offer instances where ciphertext-hiding is both
supported and configurable by the client.
Software mitigation: Patch the sparsity’s encoding. Our
attacks imply that the secrets already populated in the memory
are still not safe, as the malicious hypervisor can force re-
encryption to learn the population of the prevalent values on
them. One can imagine modifying applications to exhibit less
or no sparsity, but such changes are non-trivial, and can have
significant implications on performance and compatibility.

8.3 Limitations

The current implementation uses only a single target page
frame for simplicity, requiring each page to be relocated for
majority status testing and then moved back. To improve
scalability and eliminate repeated relocations, the attacker
can learn ciphertexts for multiple page frames and pin private
pages directly on them for in-place testing. To infer the cipher-
texts of prevalent values across multiple frames, the attacker
can either reapply Relocate-Vote or propagate known cipher-
texts by relocating pages containing known prevalent value
blocks. If these pages are idle and not actively accessed by

the victim CVM, the propagation can proceed efficiently and
stealthily without interrupting CVM execution. Furthermore,
controlled-channel attacks inherently interrupt the CVM’s
execution. While our fine-grained tracking approach (Sec-
tion 5.2) enables general-purpose monitoring of intermediate
write operations while still allowing CVM progress, it incurs
substantial performance overhead in scenarios such as Open-
VDB construction. We leave the development of application-
specific tracking strategies as future work, aiming to reduce
the number of page fault events by adapting to the specific
behavior of the target.

9 Related Work

Recent studies categorized ciphertext side-channel attacks
into dictionary and collision attacks. Dictionary attacks [23,
25] build plaintext-ciphertext pairs for specific pages, includ-
ing VM Save Area (VMSA) pages storing VM states during
VMEXIT. However, the dictionary building can be mitigated
by enhancing the security of these pages, such as adding a
nonce for each encryption of the VMSA page. From the per-
spective of dictionary attacks, our primitive does not target
specific pages in the CVM; instead, the attacker can learn
the ciphertexts of prevalent values on arbitrary page frames,
and the ciphertexts are learned with randomly sampled pages
belonging to the CVM. Thus, the dictionary building cannot
be mitigated by previous fixes for the dictionary attacks. From
the perspective of collision attacks, previous works rely heav-
ily on ciphertext collisions at precise locations. For example,
CipherSteal [44] also exploits the ReLU activation informa-
tion but relies on collision with previous zero-initialization
behavior. On the contrary, our primitive can use zeros across
the system to generate collision. Since co-located legacy soft-
ware can widely utilize sparsity and may have the behavior
of zeroing pages, only randomizing the initialization of the
ReLU’s buffers does not prevent the leakage. In summary, our
attack introduces another dimension of collision by exploit-
ing frequency information spatially, detecting collisions with
prevalent values without observing repeated values written
into specific locations.

10 Conclusion

In this paper, we present a novel primitive, Relocate-Vote,
enabling the frequency analysis for encrypted values across
memory pages. Using this primitive, we launch attacks to leak
sensitive data on three different targets: ASLR, the OpenVDB
library, and sparse LLMs. We also propose mitigations to
alleviate the impact of this attack. Our works highlights that
ciphertext side channels continue to pose a risk to confiden-
tial computing architectures and effective mitigation requires
collaboration between hardware vendors, CSPs, and tenants.

Acknowledgments

We thank our anonymous reviewers and our shepherd for their
improvement suggestions during the peer-reviewing process.
We would also like to acknowledge the in-depth technical
advice by Andy Jones (AMD), as well as Andrew Paverd and
Giovanni Cherubin (Microsoft Research), Andrew Warfield
(AWS), and Andrew Baumann (Google) for their invaluable
assistance with the responsible disclosure process.

This research was supported in part by funding from
NSERC Discovery Grants RGPIN-2018-05931 and RGPIN-
2023-04796, and NSERC-CSE Research Communities Grant
ALLRP 588144-23. Researchers funded through the NSERC-
CSE Research Communities Grants do not represent the Com-
munications Security Establishment Canada or the Govern-
ment of Canada. Any research, opinions or positions they
produce as part of this initiative do not represent the official
views of the Government of Canada.

Ethics Considerations

We have responsibly disclosed our findings to the affected
hardware vendor (Section 1) and cloud service providers (Sec-
tion 8.2). All our attacks are demonstrated with open-source
datasets or models (e.g., CT 500 dataset1 in Section 5.4 and
the ReLULlama2-13b model2 in Section 6.2) in local systems,
avoiding harms to any user data or production systems.

Open Science

Description. The artifact includes the following: (1) a kernel
implementation based on SEV-Step, supporting page relo-
cation as described in Section 7.1, and extended with func-
tionality for online tracking, as detailed in Section 7.2; (2)
a kernel module that demonstrates online-phase ciphertext
learning of zero as a global prevalent value (Section 7.2); (3)
implementations of the exploits presented in Section 4, Sec-
tion 5, and Section 6. In this paper, Table 2, Table 3, Table 6,
Figure 8, Figure 9, Figure 11, and Figure 12 are produced by
our artifacts. Figure 8 requires manual assembling of automat-
ically generated pieces of objects according to Section 5.3.
External datasets referenced in this paper, including the CT
500 dataset and the ReLULlama2-13b model, are packaged
with the artifact under the terms of their respective licenses.

Accessibility. We make the artifacts publicly available upon
the lifting of the embargo on August 12th, 2025 at https:
//doi.org/10.5281/zenodo.15609905.

1https://www.kaggle.com/datasets/crawford/qureai-headct
2https://huggingface.co/PowerInfer/ReluLLaMA-13B-

PowerInfer-GGUF

References

[1] Academy Software Foundation. ACM SIG-
GRAPH recognizes Ken Museth for OpenVDB.
https://www.aswf.io/blog/acm-siggraph-
recognizes-ken-museth-for-openvdb/, 2023.

[2] Advanced Micro Devices, Inc. SEV Secure Nested Pag-
ing Firmware ABI Specification (Revision 1.56), 2024.

[3] Guillaume Alain and Yoshua Bengio. Understanding
intermediate layers using linear classifier probes. 2018.
arXiv preprint arXiv:1610.01644, 2018.

[4] Yahya Alzahrani and Boubakeur Boufama. Biomedical
image segmentation: a survey. SN Computer Science,
2(4):310, 2021.

[5] Amazon Web Services. AMD SEV-SNP for Ama-
zon EC2 instances. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/sev-snp.html, 2024.

[6] AMD SEV Team. SEV-SNP Support in the Linux
Kernel. https://github.com/AMDESE/linux/tree/
snp-host-latest, 2023.

[7] Yonatan Belinkov. Probing classifiers: Promises, short-
comings, and advances. Computational Linguistics,
48(1):207–219, 2022.

[8] Nicholas Carlini and David Wagner. ROP is still danger-
ous: Breaking modern defenses. In Proceedings of the
23rd USENIX Security Symposium (USENIX Security
14), pages 385–399, 2014.

[9] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus
Franke, and James Bottomley. Intel TDX demystified: A
top-down approach. ACM Computing Surveys, 56(9):1–
33, 2024.

[10] Google Cloud. Confidential VM overview. https:
//cloud.google.com/confidential-computing/
confidential-vm/docs/confidential-vm-
overview, 2024. Accessed: 2025-06-10.

[11] Kjersten Criss, Kuljit Bains, Rajat Agarwal, Tanj Ben-
nett, Terry Grunzke, Jangryul Keith Kim, Hoeju Chung,
and Munseon Jang. Improving memory reliability by
bounding dram faults: DDR5 improved reliability fea-
tures. In Proceedings of the International Symposium
on Memory Systems, pages 317–322, 2020.

[12] Dong Du, Bicheng Yang, Yubin Xia, and Haibo Chen.
Accelerating extra dimensional page walks for confi-
dential computing. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 654–669, 2023.

https://doi.org/10.5281/zenodo.15609905
https://doi.org/10.5281/zenodo.15609905
https://www.kaggle.com/datasets/crawford/qureai-headct
https://huggingface.co/PowerInfer/ReluLLaMA-13B-PowerInfer-GGUF
https://huggingface.co/PowerInfer/ReluLLaMA-13B-PowerInfer-GGUF
https://www.aswf.io/blog/acm-siggraph-recognizes-ken-museth-for-openvdb/
https://www.aswf.io/blog/acm-siggraph-recognizes-ken-museth-for-openvdb/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://github.com/AMDESE/linux/tree/snp-host-latest
https://github.com/AMDESE/linux/tree/snp-host-latest
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview

[13] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function ap-
proximation in reinforcement learning. Neural networks,
107:3–11, 2018.

[14] Ali Fakhrzadehgan, Prakash Ramrakhyani, Moinud-
din K Qureshi, and Mattan Erez. SecDDR: Enabling
low-cost secure memories by protecting the ddr inter-
face. In Proceedings of the 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 14–27. IEEE, 2023.

[15] Alberto Fernández, Salvador Garcia, Francisco Herrera,
and Nitesh V Chawla. SMOTE for learning from im-
balanced data: progress and challenges, marking the
15-year anniversary. Journal of artificial intelligence
research, 61:863–905, 2018.

[16] Apache Software Foundation. Apache HTTP server.
https://httpd.apache.org/, 2025.

[17] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and
Cristiano Giuffrida. ASLR on the line: Practical cache
attacks on the MMU. In Proceedings of the Symposium
on Network and Distributed System Security, volume 17,
page 26, 2017.

[18] Wes Gurnee and Max Tegmark. Language models rep-
resent space and time. arXiv preprint arXiv:2310.02207,
2023.

[19] Trevor Hastie, Robert Tibshirani, Jerome H Friedman,
and Jerome H Friedman. The elements of statistical
learning: data mining, inference, and prediction, vol-
ume 2. Springer, 2009.

[20] Buddhi Herath, Markus Laubach, Sinduja Suresh, Beat
Schmutz, J Paige Little, Prasad KDV Yarlagadda, Diet-
mar W Hutmacher, and Marie-Luise Wille. The devel-
opment of a modular design workflow for 3D printable
bioresorbable patient-specific bone scaffolds to facilitate
clinical translation. Virtual and Physical Prototyping,
18(1):e2246434, 2023.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
ImageNet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25, 2012.

[22] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai,
and Raluca Ada Popa. An off-chip attack on hardware
enclaves via the memory bus. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[23] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yinqian Zhang. A
systematic look at ciphertext side channels on AMD
SEV-SNP. In Proceedings of the 2022 IEEE Symposium

on Security and Privacy (S&P), pages 337–351. IEEE,
2022.

[24] Mengyuan Li, Yuheng Yang, Guoxing Chen, Mengjia
Yan, and Yinqian Zhang. SoK: Understanding design
choices and pitfalls of trusted execution environments.
In Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security, pages 1600–
1616, 2024.

[25] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. CIPHERLEAKS: Breaking
constant-time cryptography on AMD SEV via the ci-
phertext side channel. In Proceedings of the 30th
USENIX Security Symposium (USENIX Security 21),
pages 717–732, 2021.

[26] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja Vu: Con-
textual sparsity for efficient LLMs at inference time. In
International Conference on Machine Learning, pages
22137–22176. PMLR, 2023.

[27] Memcached. Memcached. https://memcached.org/,
2025.

[28] Microsoft Azure. Azure confidential computing.
https://azure.microsoft.com/en-us/solutions/
confidential-compute.

[29] Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. ReLU
strikes back: Exploiting activation sparsity in large lan-
guage models. arXiv preprint arXiv:2310.04564, 2023.

[30] Ken Museth, Nick Avramoussis, and Dan Bailey. Open-
VDB. In ACM SIGGRAPH 2019 Courses, pages 1–56.
2019.

[31] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted Boltzmann machines. In Proceed-
ings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

[32] nginx. nginx. https://nginx.org/, 2025.

[33] Oracle. MySQL. https://www.mysql.com/, 2025.

[34] Alon Orlitsky and Ananda Theertha Suresh. Competi-
tive distribution estimation: Why is Good-Turing good.
Advances in Neural Information Processing Systems, 28,
2015.

[35] Qure.ai. Development and validation of
deep learning algorithms for detection of
critical findings in Head CT scan. https:

https://httpd.apache.org/
https://memcached.org/
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://nginx.org/
https://www.mysql.com/
https://web.archive.org/web/20220926004214/http://headctstudy.qure.ai/explore_data

//web.archive.org/web/20220926004214/http:
//headctstudy.qure.ai/explore_data, Sep 2022.
Accessed: 2025-06-10. Archived at Wayback Machine.

[36] Redis. Redis. https://redis.io/, 2025.

[37] Pradyumna Shome. Closing the Intel TDX page
fault side channel, or, the case for TDEXIT notify.
https://collective.flashbots.net/t/closing-
the-intel-tdx-page-fault-side-channel-
or-the-case-for-tdexit-notify/3775, 2024.
Accessed: 2025-06-10.

[38] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
PowerInfer: Fast large language model serving with a
consumer-grade GPU. arXiv preprint arXiv:2312.12456,
2023.

[39] SparseLLM. SparseLLM/ReluLLaMA-13B. https://
huggingface.co/SparseLLM/ReluLLaMA-13B, 2024.
Accessed: 2025-06-10.

[40] Confidential Computing Summit. Confiden-
tial computing summit 2024 agenda. https://
www.confidentialcomputingsummit.com/agenda,
June 2024.

[41] Luca Wilke, Florian Sieck, and Thomas Eisenbarth.
TDXDown: Single-stepping and instruction counting
attacks against Intel TDX. In Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Com-
munications Security, pages 79–93, 2024.

[42] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas
Eisenbarth. SEV-Step: A single-stepping framework for
AMD-SEV. arXiv preprint arXiv:2307.14757, 2023.

[43] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (S&P),
pages 640–656. IEEE, 2015.

[44] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen,
Shuai Wang, Yinqian Zhang, and Zhendong Su. Ci-
pherSteal: Stealing input data from TEE-shielded neural
networks with ciphertext side channels. In Proceedings
of the 2025 IEEE Symposium on Security and Privacy
(S&P), pages 79–79. IEEE Computer Society, 2024.

[45] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen,
Shuai Wang, Yinqian Zhang, and Zhendong Su. Hy-
perTheft: Thieving model weights from TEE-shielded
neural networks via ciphertext side channels. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pages 4346–
4360, 2024.

A The Page State Machine Design in AMD
SEV-SNP

Secure Encrypted Virtualization with Secure Nested Paging
(SEV-SNP) [2] enhances security by providing integrity pro-
tection through additional page-level metadata, which tracks
page ownership and enforces guest-side validation before
a guest CVM can use a page. These mechanisms prevent
unauthorized memory modifications to CVMs and mitigate
re-mapping attacks. The ownership tracking and validation
mechanisms operate as a state machine, with various metadata
fields defining the page states. Table 5 shows several states
involved in the discussion later. “—” indicates that the field
does not affect the state.

Each page is associated with an entry in the reverse-
mapping (RMP) table, which tracks its state. The state transi-
tion can be achieved by hypervisor-issued RMPUPDATE, CVM-
issued PVALIDATE, or hardware-assisted commands such as
SNP_PAGE_MOVE. The hardware needs to assist some oper-
ations because the hypervisor cannot access the necessary
information to perform the operations, such as relocating a
page, since the hypervisor cannot access the encryption key of
the CVMs. The ownership tracking mechanism ensures that
only the designated owner can modify a page, thereby pre-
venting the hypervisor from tampering with pages assigned
to a guest CVM. This is implemented by requiring the hy-
pervisor to explicitly assign a page through the RMPUPDATE
operation, which updates the assigned bit in the RMP ta-
ble. Once assigned, the page’s ownership transitions to the
guest CVM, rendering it cannot by modified by the hyper-
visor. To counter re-mapping attacks, SEV-SNP enforces a
guest-side validation mechanism. This process mandates the
guest CVM to validate any new page assigned to it before
use. This ensures that a page cannot be remapped without the
guest’s knowledge or consent since the validated bit of the
new page can only be set by the CVM through PVALIDATE,
thereby upholding the integrity of the CVM’s memory.

Pre-Guest

HypervisorGuest-
Valid

Guest-
Invalid

PVALIDATE

RMPUPDATE

RMPUPDATE

SNP_PAGE_MOVE
(Destination Page)

SNP_PAGE_MOVE
(Source Page)

RMPUPDATE

Figure 13: A subset of transition functions in the page state
machine of AMD SEV-SNP.

Figure 13 illustrates a part of the transitions in the state
machine. In the state machine, if a hypervisor page is assigned
to a guest by issuing the RMPUPDATE command to update its
assigned bit and the ASID field, it is transitioned into the

https://web.archive.org/web/20220926004214/http://headctstudy.qure.ai/explore_data
https://web.archive.org/web/20220926004214/http://headctstudy.qure.ai/explore_data
https://redis.io/
https://collective.flashbots.net/t/closing-the-intel-tdx-page-fault-side-channel-or-the-case-for-tdexit-notify/3775
https://collective.flashbots.net/t/closing-the-intel-tdx-page-fault-side-channel-or-the-case-for-tdexit-notify/3775
https://collective.flashbots.net/t/closing-the-intel-tdx-page-fault-side-channel-or-the-case-for-tdexit-notify/3775
https://huggingface.co/SparseLLM/ReluLLaMA-13B
https://huggingface.co/SparseLLM/ReluLLaMA-13B
https://www.confidentialcomputingsummit.com/agenda
https://www.confidentialcomputingsummit.com/agenda

Table 5: Page state definitions.

Page State Assigned Validated ASID Immutable GPA VMSA
Hypervisor 0 0 0 0 — —
Pre-Guest 1 0 > 0 1 — —

Guest-Invalid 1 0 > 0 0 — —
Guest-Valid 1 1 > 0 0 — —

.

Guest-Invalid state. The guest CVM must validate it by trig-
gering the PVALIDATE instruction during its execution before
it can use the page ❶-❷. The official documentation suggests
that the guest CVM only validates a guest physical address
(GPA) once, and the subsequent validation requirements for
the same GPA could indicate a potential attack, where a mali-
cious hypervisor maps the guest page of GPA to a different
invalid page.

With this suggestion, a GPA is expected to be validated only
once, which implies that valid operations, including hardware-
assisted commands, should not set a validated GPA to an
invalidated state. Under this implication, a page frame ini-
tially belonging to the hypervisor can bypass the guest VM’s
validation if it is assigned as the destination of a page move
of a validated private page, supported by management com-
mand SNP_PAGE_MOVE. The hypervisor can compel a page
in the Hypervisor state to transition into the Pre-Guest state
using RMPUPDATE and subsequently to the Guest-Valid state
via SNP_PAGE_MOVE ❸-❹. The hardware re-encrypts the page
with the new tweak values derived from the addresses in the
new page frame. The source page is then transitioned to the
Guest-Invalid state with the effect of the SNP_PAGE_MOVE
command ❺ and can be further turned into the Hypervisor
state via RMPUPDATE ❻.

In summary, once the guest validates a guest page, the
hypervisor can arbitrarily move it to arbitrary hypervisor-
owned page frames while maintaining its validated state
without requiring the guest’s permission or validation. This
allows the attacker to control the bits in each encryption
block’s address except for the low 12 bits. Another command,
SNP_PAGE_SWAP_IN, has similar effects and can be utilized
similarly.

B Guest Page Walk and Attacker’s Visibility

On the x86 architecture, the page table hierarchy typically
comprises four levels: the Page Global Directory (PGD), Page
Upper Directory (PUD), Page Middle Directory (PMD), and
Page Table Entry (PTE). Each entry at these levels holds the
physical address of the subsequent level’s page, thus forming
a chain of references to progressively deeper levels. Each
page level contains 512 entries. Virtual address translation
necessitates a page walk when there is a TLB miss, and on
x86, this operation is handled by the hardware. During this

page walk, the hardware attempts to set the access bit of each
accessed page table entry, regardless of whether it has already
been set. Thus, if the hypervisor clears the W bit in the host
page table, the hardware write triggers a page fault of write
protection violation. The CVM halts execution to report the
corresponding faulting GPA of the page table page with the
lowest 12 bits cleared, requesting the hypervisor to lift the
write protection by setting the W bit. In conclusion, the page
walk sequence can be exposed by the controlled-channel-
based method by clearing the W bit.

C Common Layout of PGD Pages

Figure 14 shows the typical layout of the PGD pages, il-
lustrating the 16x16 bitmaps of PGD pages of 100 random
processes on a CVM. Each bitmap has 256 blocks represent-
ing a PGD page, and each encryption block accommodates
two 8-byte page table entries. The white blocks represent
16-byte zeros, and the red blocks indicate at least one mapped
entry in an encryption block. The second half represents the
mappings in the kernel space, so they share the layout.

Figure 14: The memory layouts on 100 randomly sampled
PGD pages.

Table 6: m
n : Predicted coverage (m) and actual coverage (n).

1% 5% 50%

PUD PMD PTE PUD PMD PTE PUD PMD PTE

nginx 97.46
97.45

100
100

98.93
99.37

98.77
98.74

100.0
100.0

100.0
99.99

99.93
99.94

100.0
100.0

99.99
99.99

apache 96.73
97.24

89.93
87.60

88.80
88.20

98.78
98.71

98.24
97.81

99.99
99.99

99.95
99.94

99.25
99.10

99.99
100.0

mysql 97.27
97.20

96.47
97.12

99.93
100.0

98.10
98.10

99.26
99.60

100.0
100.0

99.90
99.92

99.88
99.77

100.0
100.0

redis 98.00
97.34

100.0
100.0

100.0
100.0

98.60
98.72

100.0
100.0

100.0
100.0

99.93
99.91

100.0
100.0

100.0
100.0

memcached 97.07
97.36

99.47
99.19

100.0
100.0

98.37
98.28

99.85
99.75

100.0
100.0

99.90
99.90

99.94
99.95

100.0
100.0

D Good-Turing’s Prediction and Actual Cov-
erage

Table 6 presents the predicted coverage by the Good-Turing
estimator and actual coverage for each page table level of
PUD, PMD, and PTE across applications with different sam-
ple sets. It demonstrates that the Good-Turing estimator pro-
vides accurate predictions of the comprehensiveness of the
fingerprint sets at different stages of fingerprint collection.

	Introduction
	Background: Confidential Computing
	Attack Overview
	Relocate-Vote
	Exploiting Sparsity

	De-randomizing ASLR on CVMs
	Offline-Phase: Classifiers Preparation
	ASLR Online-Phase Attack Flow
	ASLR Leakage Results

	OpenVDB Leakage
	Offline-Phase Application Analysis
	Online-phase Tracking
	Object Recovery
	OpenVDB Leakage Results

	Sparse LLM Leakage via ReLU Activation
	ReLU Activation Signals
	Leveraging ReLU Activation Information

	Implementation
	Relocate-Vote Implementation
	Implementation of Online Attacks

	Discussion
	Confidential Computing Platforms
	Mitigation
	Limitations

	Related Work
	Conclusion
	The Page State Machine Design in AMD SEV-SNP
	Guest Page Walk and Attacker's Visibility
	Common Layout of PGD Pages
	Good-Turing's Prediction and Actual Coverage

