PANCAST: LISTENING TO BLUETOOTH BEACONS FOR EPIDEMIC RISK MITIGATION **AASTHA MEHTA**

HEINER KREMER, BERNHARD SCHÖLKOPF GILLES BARTHE MATTHEW LENTZ LARS LORCH MPI FOR SECURITY AND PRIVACY MPI FOR INTELLIGENT SYSTEMS ETH ZÜRICH DUKE UNIV.

ROBERTA DE VITI, PETER DRUSCHEL, DEEPAK GARG, MANUEL GOMEZ-RODRIGUES, PIERFRANCESCO INGO MPI FOR SOFTWARE SYSTEMS

> NICHOLE BOUFFORD, MING CHENG-JIANG, ROWAN LINDSAY UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER

> > 31 AUG 2022

MY RESEARCH

Building systems for security and privacy ...

Enabling compliance with data regulations

Mitigating side channels in cloud

Securing ML in the edge

Inclusive and privacypreserving contact tracing

MY RESEARCH

Building systems for security and privacy ...

Enabling compliance with data regulations

Mitigating side channels in cloud

Securing ML in the edge

Inclusive and privacypreserving contact tracing

Testing

Contact tracing

Testing

Tracing infected persons and those who came in contact with them

Testing

Tracing infected persons and those who came in contact with them

Direct test resources to individuals likely to be infected

Testing

Tracing infected persons and those who came in contact with them

Direct test resources to individuals likely to be infected

Can provide insights into circumstances of contagion
Inform health policies and interventions that can help contain the disease

Testing

Tracing infected persons and those who came in contact with them

Direct test resources to individuals likely to be infected

Can provide insights into circumstances of contagion
Inform health policies and interventions that can help contain the disease

Isolation

The Local news@thelocal.de @thelocalgermany

> 22 June 2020 11:32 CEST

Updated 22 June 2020 17:11 CEST

coronavirus

industry

Share this articl

More than 1,300 workers test positive: Germany fights to control coronavirus spread at meat plant

Members of the Bundeswehr (German Army) outside Tönnies. Photo: DPA

4

MANUAL CONTACT TRACING

Limitations

- Difficult to scale
- People forget information

Health workers interview sick persons about their recent encounters and travel history

SPECTS: Smartphone-Based Pairwise Encounter-Based Contact Tracing Systems

SPECTS: Smartphone-Based Pairwise Encounter-Based Contact Tracing Systems

• Record physical proximity between users via close-range bluetooth exchange

- Record physical proximity between users via close-range bluetooth exchange
- Sick persons report encounter history to a health authority (backend)

SPECTS: Smartphone-Based Pairwise Encounter-Based Contact Tracing Systems

- Record physical proximity between users via close-range bluetooth exchange
- Sick persons report encounter history to a health authority (backend)
- Users query backend for risk info (centralized) OR

SPECTS: Smartphone-Based Pairwise Encounter-Based Contact Tracing Systems

7

- Record physical proximity between users via close-range bluetooth exchange
- Sick persons report encounter history to a health authority (backend)
- Users query backend for risk info (centralized) OR
- Backend notifies users (decentralized)

push notification

e-range bluetooth exchange authority (backend)

SPECTS: Smartphone-Based Pairwise Encounter-Based Contact Tracing Systems

- Record physical proximity between users via close-range bluetooth exchange
- Sick persons report encounter history to a health authority (backend)
- Users query backend for risk info (centralized) OR
- Backend notifies users (decentralized)

push notification

e-range bluetooth exchange authority (backend)

Trade utility for privacy

Trade utility for privacy

Do not capture contextual info useful for epidemiological analysis (e.g. location, indoor/ outdoor, noise level)

Trade utility for privacy

Do not capture contextual info useful for epidemiological analysis (e.g. location, indoor/ outdoor, noise level)

Trade utility for privacy

Do not capture contextual info useful for epidemiological analysis (e.g. location, indoor/ outdoor, noise level)

Trade utility for privacy

Vulnerabilities

<A1, B2> <A2, C3> A2 (G. **C**3 <C3, A2> Cannot capture noncontemporaneous transmissions (e.g. elevators) upload ids

3

B2

Do not capture contextual info useful for epidemiological analysis (e.g. location, indoor/ outdoor, noise level)

<B2, A1>

<B3, D1>

ッ

B3

D

relay and replay attacks

8

Do not capture contextual info useful for epidemiological analysis (e.g. location, indoor/ outdoor, noise level) relay and replay attacks

 Placed in strategic locations (restaurants, classroom, buses)

• Labeled with location, env. info

Broadcast <ephIDs, loc, time>

BLE beacon

 Placed in strategic locations (restaurants, classroom, buses)

• Labeled with location, env. info

- Beacons and user device registrations, user uploads
- Epidemiological analysis
- Disseminate risk info

Broadcast <ephIDs, loc, time>

- User devices mostly passive
- Transmit with explicit user consent
- Decentralized risk notification

- User devices mostly passive
- Transmit with explicit user consent
- Decentralized risk notification

Key Primitive: Infrastructure-to-User Encounters

 Minimizes data collection Similar privacy as existing SPECTS while using location info Robust against eavesdropping, relay, and replay attacks

- Risk dissemination
- Implementation and evaluation
- Deployment

OUTLINE

RISK DISSEMINATION

<E0, L0, T7> <E4, L1, T2> * . . . • • • * ••• <E3, L2, T5> Backend * <E2, L3, T4> <E1, L2, T0>

Overview

<E0, L0, T7> <E3, L2, T5> <E6, L1, T9>

Overview

<E0, L0, T7> <E3, L2, T5> <E6, L1, T9>

Overview

- Correct information
- Preserve privacy of diagnosed individuals
- Preserve privacy of users seeking risk information
- Timely dissemination
- Low bandwidth, power, compute cost for user devices

Key Requirements

Key Requirements

- Correct information Risk data signed by backend
- Preserve privacy of diagnosed individuals
- Preserve privacy of users seeking risk information
- Timely dissemination
- Low bandwidth, power, compute cost for user devices

Key Requirements

- Correct information Risk data signed by backend
- Preserve privacy of diagnosed individuals
- Preserve privacy of users seeking risk information
- Timely dissemination
- Low bandwidth, power, compute cost for user devices

Add junk entries using differential privacy

Key Requirements

- Risk data signed by backend Correct information
- Preserve privacy of diagnosed individuals
- Preserve privacy of users seeking risk information
- Timely dissemination
- Low bandwidth, power, compute cost for user devices

Add junk entries using differential privacy

➡ Ideally, using broadcast ➡ But this is inefficient ...

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

Assume new encounter every 5 min throughout the day 4032 encounters in 14 days

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

Assume new encounter every 5 min throughout the day 4032 encounters in 14 days

DP noise: ~300K entries at 99th percentile

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

Assume new encounter every 5 min throughout the day = 4032 encounters in 14 days With cuckoo filter, compress from 15 bytes to 27 bits with 0.01% false positive rate

DP noise: ~300K entries at 99th percentile

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

Assume new encounter every 5 min throughout the day = 4032 encounters in 14 days

Country	# new cases/day	# risk entries/day	Bytes/day (MiB)
Australia	18	390,838	1.258
Germany	3346	$13,\!809,\!334$	44.447
Italy	3821	15,724,534	50.612
France	16036	$64,\!975,\!414$	209.133
Brazil	26429	$106,\!879,\!990$	344.009
USA	48639	$196,\!430,\!710$	632.242
India	72019	290,698,870	935.658
	we delense to us info /o a non	winned the second and Oat 2020	

https://www.worldometers.info/coronavirus/ (based on Oct 2020)

With cuckoo filter, compress from 15 bytes to 27 bits with 0.01% false positive rate

DP noise: ~300K entries at 99th percentile

risk-data/day = $(\#new-cases/day * max-enctrs/day + \Delta) * sizeof(ephID)$ bytes

#risk-entries/day

Assume new encounter every 5 min throughout the day ⇒4032 encounters in 14 days

Country	# new cases/day	# risk entries/day	Bytes/day (MiB)	Delay (s)
Australia	18	390,838	1.258	13.191
Germany	3346	$13,\!809,\!334$	44.447	466.065
Italy	3821	15,724,534	50.612	530.703
France	16036	64,975,414	209.133	2192.92
Brazil	26429	106,879,990	344.009	3607.2
USA	48639	$196,\!430,\!710$	632.242	6629.54
India	72019	290,698,870	935.658	9811.09

https://www.worldometers.info/coronavirus/ (based on Oct 2020)

With cuckoo filter, compress from 15 bytes to 27 bits with 0.01% false positive rate

DP noise: ~300K entries at 99th percentile

> Assuming BLE xput of ~0.8 Mbps

Broadcast protocol

Network beacons broadcast risk data of local region

Dongles passively listen to a network beacon

Broadcast protocol

Network beacons broadcast risk data of local region

Dongles passively listen to a network beacon

Ahmedabad

Problem: Travellers may not get all risk information

DISSEMINATION PROTOCOL Querying protocol Dongles query for risk data of non-local regions •••• Backend

Broadcast protocol

Network beacons broadcast risk data of local region

Dongles passively listen to a network beacon

Ahmedabad

Problem: Travellers may not get all risk information

Broadcast protocol

Network beacons broadcast risk data of local region Dongles query for risk data of non-local regions

Dongles passively listen to a network beacon

Ahmedabad

Problem: Travellers may not get all risk information

Querying protocol

Privacy goal: hide queries and responses from backend, network beacon, eavesdroppers

Broadcast protocol

Network beacons broadcast risk data of local region

Dongles passively listen to a network beacon

Ahmedabad

Problem: Travellers may not get all risk information

Broadcast protocol

Network beacons broadcast risk data of local region

Dongles passively listen to a network beacon

Ahmedabad

Problem: Travellers may not get all risk information

Assumption: non-colluding servers

• e.g., using two different cloud providers or heterogeneous hardware TEEs

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Retrieval. Foundations of Computer Science, 1995

Assumption: non-colluding servers

• e.g., using two different cloud providers or heterogeneous hardware TEEs

D

B[0]

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Retrieval. Foundations of Computer Science, 1995

Server S1

Server S2

Assumption: non-colluding servers

• e.g., using two different cloud providers or heterogeneous hardware TEEs

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Retrieval. Foundations of Computer Science, 1995

Server S2

 S_1

Assumption: non-colluding servers

• e.g., using two different cloud providers or heterogeneous hardware TEEs

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Retrieval. Foundations of Computer Science, 1995

geneous hardware TEEs $D = \langle B[i] \rangle$ $B_1 = \bigoplus_{i=0}^{N} s_1[i] \cdot B[i]$ Server S1 $B_2 = \bigoplus_{i=0}^{N} s_2[i] \cdot B[i]$

Server S2

B[2] B[3]

 $B_1 = B[2]$

 $B_2 = B[1] \oplus B[2]$

Assumption: non-colluding servers

• e.g., using two different cloud providers or heterogeneous hardware TEEs

$$S_1 0 0 1 0 D B[0]$$

 $S_2 0 1 1 0$

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Information Retrieval. Foundations of Computer Science, 1995

$$B_1 = \bigoplus_{i=0}^N s_1[i] \cdot B[i]$$

$$B_2 = \bigoplus_{i=0}^{N} s_2[i] \cdot B[i]$$

B[3] B[2] **B**[1

 $B_1 = B[2]$

 $B_2 = B[1] \oplus B[2]$

What is a "good" uniform block (region) size?

Small regions a query bandwidth

Large regions response bandwidth

What is a "good" uniform block (region) size? Small regions a query bandwidth Large regions response bandwidth

Our solution

1. Dynamically adapt regions to maintain a uniform block size

What is a "good" uniform block (region) size? Small regions a query bandwidth Large regions → response bandwidth

Our solution

1. Dynamically adapt regions to maintain a uniform block size RiskDB

ephID	locID	time	
E0	LO	T7	BO
E4	L1	T2	
E1	L2	Т0	
E3	L2	T5	
E2	L3	T4	B2 + padding

What is a "good" uniform block (region) size? Small regions a query bandwidth Large regions → response bandwidth

Our solution

1. Dynamically adapt regions to maintain a uniform block size

Ris	k	D	B
Ris	k	D	B

L-map

L0

L1

L2

L3

ephID	locID	time	
E0	LO	T7] _{В0}
E4	L1	T2	
E1	L2	т0]
E3	L2	T5	
E2	L3	T4	B2 + padding

What is a "good" uniform block (region) size? Small regions a query bandwidth Large regions → response bandwidth

Our solution

1. Dynamically adapt regions to maintain a uniform block size

Ris	k	D	B
Ris	k	D	B

L-map

LO

L1

L2

L3

B0

B0

B1

B2

ephID	locID	time	
E0	LO	T7] _{В0}
E4	L1	T2	
E1	L2	т0]
E3	L2	T5	
E2	L3	T4	B2 + padding

- 2. Dongles use two rounds of PIR
- Round 1: block idx = PIR(loc id)
- Round 2: block = PIR(block idx)

- Risk dissemination
- Implementation and evaluation
- Deployment

OUTLINE

IMPLEMENTATION

PanCast devices

Smartphone app

Dev Kits: ~300 CAD/~18K INR

Production: ~20 CAD/~1200 INR

Network beacons can be integrated with wifi base stations

EVALUATION

EVALUATION

Risk download latency

Broadcast: BLE periodic broadcast @10 ms Querying: BLE connection oriented comm.

Risk download latency

Broadcast: BLE periodic broadcast @10 ms Querying: BLE connection oriented comm.

EVALUATION

Payload size: 5 MB (~1.5 million risk entries)

Operation	Latency (s)
Broadcast	315
Querying	61

EVALUATION

Risk download latency

Broadcast: BLE periodic broadcast @10 ms Querying: BLE connection oriented comm.

Battery life

Operation	Current	Normalized current in an he
Base current	0.10 mA	0.10 mA
BLE Scanning	3.77 mA	0.19 mA
Encounter logging	2.60 mA	0.01 mA
Crypto	2.50 mA	~10 ⁻⁴ mA

Payload size: 5 MB (~1.5 million risk entries)

Operation	Latency (s)
Broadcast	315
Querying	61

EVALUATION

Risk download latency

Broadcast: BLE periodic broadcast @10 ms Querying: BLE connection oriented comm.

Battery life

Operation	Current	Normalized current in an he
Base current	0.10 mA	0.10 mA
BLE Scanning	3.77 mA	0.19 mA
Encounter logging	2.60 mA	0.01 mA
Crypto	2.50 mA	~10 ⁻⁴ mA

Payload size: 5 MB (~1.5 million risk entries)

Operation	Latency (s)	
Broadcast	315	
Querying	61	

our

Typical coin cells: 220 mAh Expected battery life: $\frac{220}{0.1 + 0.19 + 0.01} \approx 33$ days

Strategic deployment of beacons

• e.g. prioritize restaurants, supermarkets, schools over forests

Strategic deployment of beacons

• e.g. prioritize restaurants, supermarkets, schools over forests

Interoperate with manual tracing

Provides utility even with low user adoption

Strategic deployment of beacons

• e.g. prioritize restaurants, supermarkets, schools over forests

Interoperate with manual tracing

Provides utility even with low user adoption

Can manually insert risk entries into the backend based on users' inputs

Strategic deployment of beacons

• e.g. prioritize restaurants, supermarkets, schools over forests

Interoperate with manual tracing

Provides utility even with low user adoption

ONGOING WORK

Deployment

- Ran a pilot deployment with simulated infection transmissions @ UBC CS
- Future: Perform a real-world deployment
- Dataset generation
- Refining risk estimation models

Practical considerations

- Beacon placement density
- Handling clock synchronizations
- Visualization support for dongle data via users' personal devices

PANCAST www.pancast.mpi-sws.org

Property	PanCast
Utility	 Strategically-placed beacons provide contextual in allowing more accurate risk estimates Useful even under partial deployment
Privacy	 Beacons only broadcast; user devices mostly pass Decentralized risk notification Differential privacy for patients, IT-PIR for queriers
Inclusiveness	Simple, zero-maintenance dongles, or smartphones
Interoperability	Interoperates with manual tracing; complements SP

PANCAST www.pancast.mpi-sws.org

Property	PanCast
Utility	 Strategically-placed beacons provide contextual i allowing more accurate risk estimates Useful even under partial deployment
Privacy	 Beacons only broadcast; user devices mostly pass Decentralized risk notification Differential privacy for patients, IT-PIR for queriers
Inclusiveness	Simple, zero-maintenance dongles, or smartphones
Interoperability	Interoperates with manual tracing; complements SP

QUESTIONS?

BACKUP

PRIVACY

Operation stage	Backend	Other users	Network beacon	Terminal
Registration	PII(e.g., phone $\#$), user-donglemapping, beacon-locationmap,devices' secret keys,	none	none	none
Encounter logging	none	none	none	none
Encounter upload	location history	none	none	upload size, location his- tory*
Risk notification	none	common subset of location history, but anonymized**	noised broadcast size*** and time	none

* Only if user wishes to use the terminal to select data prior to upload ** Other users only learn ephids of beacons where they intersected with at least one sick user *** Beacons only observe differentially-private (noised) broadcast size (recall: Δ)

No environmental factors; PanCast with manual tracing, SPECTS do not interoperate with manual tracing

Site-dependent transmission rates in PanCast, but not SPECTS.

PanCast vs. SPECTS without manual tracing and without leveraging environmental factors.

PanCast performs worse than SPECTS because it is deprived of beacons, manual tracing, and environmental information

Reduction of infections with combined SPECTS + PanCast + manual tracing, but without environmental factors

- Clock inconsistencies due to beacon and dongle power failures
- Beacon location misconfiguration
- Relay attacks

SECURITY

1. Delayed release (using personal device)

1. Delayed release (using personal device)

1. Delayed release (using personal device)

Test clinic

1. Test result (+ve) 2. enc_{OTP}("upload", test-result) * Dongle

Trusted terminal

1. Delayed release (using personal device)

Test clinic 1. Test result 2 (+ve) 2. enc_{OTP}("upload", test-result) ∦ **3**. $enc_{k_D}(enctr-list, test-result)$ Dongle **Trusted terminal**

1. Delayed release (using personal device)

Test clinic 1. Test result 2 (+ve) 2. enc_{OTP}("upload", test-result) * **3**. $enc_{k_D}(enctr-list, test-result)$ **Trusted terminal** Dongle

4. $enc_{k_D}(enctr-list, test-result)$

2. Early release (from test clinic)

4. $enc_{k_D}(enctr-list, test-result)$

4. $enc_{k_D}(enctr-list, test-result)$

4. $enc_{k_D}(enctr-list, test-result)$

ENCOUNTER UPLOAD Risk database: $\{eph_{B,i_B}, loc_B, T\}$ 4. $enc_{k_D}(enctr-list, test-result)$ Backend **Trusted terminal** 5. OTP, test-result 3. $enc_{OTP}(enc_{k_D}(enctr-list, test-kit\#))$ Backend **Trusted terminal** 33

